gải phương trình:
\(\sqrt{x}+\sqrt{x^2-1}=\sqrt{2x^2-3x-4}\)
Gải phương trình sau
a)\(\sqrt{2x^2+4x+1}=1-x^2-2x\)
b)\(\sqrt{x+4}+\sqrt{x-4}=2x+2\sqrt{x^2-16}\)
c) (x+4)(x+1)-3\(\sqrt{x^2+x+2}=\sqrt{3x^2+3x}\)
a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)
\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)
\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)
\(\Rightarrow\text{pt vô nghiệm}\)
b. ĐKXĐ: \(x\le-4;x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)
\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)
pt đã cho tương đương:
\(t=t^2\)
\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)
\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)
gải các phương trình:
a,\(\sqrt{4x^2-1}-2\sqrt{2x-1}=0\)
b,\(\dfrac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\)
c,\(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
a: \(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x+1}-2\right)=0\)
=>2x-1=0 hoặc 2x+1=4
=>2x=1 hoặc 2x=3
=>x=3/2 hoặc x=1/2
b: \(\Leftrightarrow3x+2=2\left(x+2\right)\)
=>3x+2=2x+4
=>x=2(nhận)
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
ae gải hộ mk cái: giải phương trình
1: \(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=\frac{x^2+4}{x}\)
2: \(\sqrt{x+3}-\sqrt{1-x}=1+x\)
3: \(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
4:\(\sqrt{x^2-x+1}-\sqrt{x^2+x+1}=2x\)
5:\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}\)
6:\(\sqrt{\frac{42}{5-x}}+\sqrt{\frac{60}{7-x}}=6\)
7:\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
mọi người jup mình giải đi khó wá
1 bài thui cx đc
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
Giải các phương trình sau
\(1)\sqrt{x}+\sqrt{x^2-1}=\sqrt{2x^2-3x-4}\)
\(2)x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)
1.
ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)
\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)
\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow a^2-3b^2-2ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow a=3b\)
\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)
\(\Leftrightarrow x^2-x=9\left(x+1\right)\)
\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)
2.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:
\(x^3+3\left(x^2-4a^2\right)a=0\)
\(\Leftrightarrow x^3+3ax^2-4a^3=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)
1. Giải các phương trình sau:
a)\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt[]{x+\sqrt{x^2-1}}=2\)
b)\(x^2-x-\sqrt{x^2-x+13}=7\)
c)\(x^2+2\sqrt{x^2-3x+1}=3x+4\)
d)\(2x^2+5\sqrt{x^2+3x+5}=23-6x\)
e)\(\sqrt{x^2+2x}=-2x^2-4x+3\)
f)\(\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+3x+4\)
2. Giải các bất phương trình sau:
1)\(\sqrt{x^2-4x+5}\ge2x^2-8x\)
2)\(2x^2+4x+3\sqrt{3-2x-x^2}>1\)
3)\(\dfrac{\sqrt{-3x+16x-5}}{x-1}\le2\)
4)\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
5)\(\dfrac{9x^2-4}{\sqrt{5x^2-1}}\le3x+2\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
giải phương trình :
a,\(\sqrt{2x^2+13x+5}+\sqrt{2x^2-3x+5}=8\sqrt{x}\)
b, \(\sqrt{x^2-\dfrac{4}{3}}+2\sqrt{x^2-1}=x\)
a.
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-12x+5=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)
\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)
\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)
\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)
\(\Leftrightarrow3x^2-4=0\)
\(\Leftrightarrow...\)