\(P=(\dfrac{x+2}{x\sqrt x-1} +\dfrac{\sqrt x}{x+\sqrt x+1}+\dfrac{1}{1-\sqrt x})÷ \dfrac{\sqrt x-1}{2}\)Rút gọn P
Chứg minh P>0
P=[\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] :\(\dfrac{\sqrt{x}-1}{2}\)
a)Rút gọn biểu thức trên
b)Chứng minh rằng P > 0 với mọi x≥ 0 và x ≠ 1.
a: \(P=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}}{x\sqrt{x}-1}\)
a, Với x ≥ 0, x ≠1
P= [ \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] : \(\dfrac{\sqrt{x}-1}{2}\) =
\(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)]
: \(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\):\(\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)
P= \(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
P= \(\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có : \(x+\sqrt{x}+1=\left(\sqrt{x}\right)^2+2.\dfrac{1}{2}.\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}\)= (\(\sqrt{x}+\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\) >\(0\) ∀ x
=> \(\dfrac{3}{x+\sqrt{x}+1}>0\) ∀ x
=> P > 0 với mọi x ≥ 0 và x ≠ 1
Cho biểu thức P = ( \(\dfrac{x+2}{x\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) + \(\dfrac{1}{1-\sqrt{x}}\) ) : \(\dfrac{\sqrt{x}-1}{2}\) với x ≥ 0 và x ≠ 1
a) Rút gọn biểu thức trên
b) Chứng minh P > 0 với mọi x ≥ 0 và x ≠ 1
a) \(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(P=\left(\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\left(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)\(P=\left(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(P=\dfrac{2}{x+\sqrt{x}+1}\)
b) Mà với \(x\ge0\) và \(x\ne1\) thì
\(x+\sqrt{x}+1\ge0\) và \(2>0\) nên \(P>0\)
a: \(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2}=\dfrac{2}{x+\sqrt{x}+1}\)
b: x+căn x+1+1>=1>0
2>0
=>P>0 với mọi x thỏa mãn x>=0 và x<>1
A=(\(\sqrt{x}-\dfrac{1}{\sqrt{x}}\)):\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
a)Rút gọn A
b)Tính giá trị của P khi x=\(\dfrac{2}{2+\sqrt{3}}\)
c) Chứng minh P>2 với mọi x>0,x≠1
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)
\(A=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1+1-\sqrt{x}}\)
\(=\dfrac{x-1}{x-\sqrt{x}}\cdot\left(\sqrt{x}+1\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b: \(x=\dfrac{2}{2+\sqrt{3}}=2\left(2-\sqrt{3}\right)=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
Khi \(x=\left(\sqrt{3}-1\right)^2\) thì \(P=\dfrac{\left(\sqrt{3}-1+1\right)^2}{\sqrt{3}-1}=\dfrac{3}{\sqrt{3}-1}=\dfrac{3\left(\sqrt{3}+1\right)}{2}=\dfrac{3\sqrt{3}+3}{2}\)
c: \(P-2=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}-2\)
\(=\dfrac{x+2\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}=\dfrac{x+1}{\sqrt{x}}>0\)
=>P>2
Rút gọn:
1) \(P=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right):\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
2) \(P=\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
Giúp mk nhé :3
Rút gọn biểu thức sau :
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\) ( x ≥ 0 ; x ≠ 16 )
\(P=\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)
\(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)
\(B=\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}}\)
\(A=\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}\)
b) ĐKXĐ : \(x\ne\pm1\)
\(P=\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)-\left(6x-4\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1+2x-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)
a) ĐKXĐ : \(x\ge0;x\ne16\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x-4}}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{x-16}:\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{x+16}{x-16}:\dfrac{x+16}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{x-16}\)
\(=\left(\dfrac{\sqrt{x}.\left(\sqrt{x}-4\right)}{x-4}+\dfrac{4.\left(\sqrt{x}+4\right)}{x-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(=\left(\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\right).\dfrac{\sqrt{x}+2}{x+16}\)
\(=\dfrac{x+16}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x+16}\)
\(=\dfrac{1}{\sqrt{x}-2}\)
\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)
rút gọn P
Tìm x để P =2
Tính P tại x = 3-\(2\sqrt{2}\)
Tìm x để P>0
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
a) Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2\)
\(=\dfrac{x-2\sqrt{x}+1-\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{4x}\)
\(=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{4x}\)
\(=\dfrac{-4\sqrt{x}\cdot\left(x-1\right)}{4x}\)
\(=\dfrac{-x+1}{\sqrt{x}}\)
b) Để P=2 thì \(-x+1=2\sqrt{x}\)
\(\Leftrightarrow-x+1-2\sqrt{x}=0\)
\(\Leftrightarrow x+2\sqrt{x}-1=0\)
\(\Leftrightarrow x+2\sqrt{x}+1-2=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=\sqrt{2}\\\sqrt{x}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{2}-1\\\sqrt{x}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\Leftrightarrow x=3-2\sqrt{2}\)
Vậy: Để P=2 thì \(x=3-2\sqrt{2}\)
Rút gọn Biểu thức sau:
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2.\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)với x lớn hơn 0 và x khác 1
\(P=\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2.\left(\dfrac{\left(\sqrt{x}-1\right)^2}{x-1}-\dfrac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\)
\(=\left(\dfrac{1-x}{2\sqrt{x}}\right)^2.\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\dfrac{\left(1-x\right)^2}{2\sqrt{x}}.\dfrac{-4\sqrt{x}}{-\left(1-x\right)}\)
\(=\left(1-x\right).2\sqrt{x}\)
\(=2\sqrt{x}-2x\sqrt{x}\)
Rút gọn biểu thức:
A=\(\left(\dfrac{2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x-\sqrt{x}}\right).\left(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)với x>0;x\(\ne\)1
Ta có: \(A=\left(\dfrac{2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x-\sqrt{x}}\right)\left(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)
\(=\left(\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\left(\sqrt{x}-2\right)\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\left(\sqrt{x}-2\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
cho bt
P=(\(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)+\(\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}\)):\(\dfrac{x+1+2\sqrt{x}}{x-1}\)
a)Rút gọn P
b)Tìm x để P<0
\(a,P=\left(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}\right):\dfrac{x+1+2\sqrt{x}}{x-1}\left(dk:x>0,x\ne1\right)\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right):\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\left(\sqrt{x}-1+2\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\left(\sqrt{x}+1\right).\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ =\sqrt{x}-1\)
\(b,P< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
So với \(dk:x>0\) \(\Rightarrow S=\left\{x|0< x< 1\right\}\)