Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị mai phương
Xem chi tiết
Phùng Tú Văn
20 tháng 3 2022 lúc 21:12

a) x(4x + 2) = 4x2 - 14

⇔ 4x2 + 2x = 4x2 - 14

⇔ 4x2 - 4x2 + 2x = -14

⇔ 2x = -14

⇔ x = -7

Vậy tập nghiệm S = ......

b) (x2 - 9)(2x - 1) = 0

⇔ x2 - 9 = 0 hoặc 2x - 1 = 0

⇔ x2 = 9 hoặc 2x = 1

⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)

Vậy .......

c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\) 

⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0

       ⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........
DakiDaki
Xem chi tiết
Rin Huỳnh
18 tháng 2 2022 lúc 8:41

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

Nguyễn Lê Phước Thịnh
18 tháng 2 2022 lúc 9:29

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

Quynh Existn
Xem chi tiết
missing you =
10 tháng 7 2021 lúc 10:19

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 10:31

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 20:12

a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)

\(\Leftrightarrow25x-4x=-8-75\)

\(\Leftrightarrow21x=-83\)

hay \(x=-\dfrac{83}{21}\)

b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)

\(\Leftrightarrow\left|2x+1\right|=3x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)

d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)

\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)

\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)

\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)

\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)

\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)

\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)

vậy: Phương trình vô nghiệm

Tiến Hoàng Minh
Xem chi tiết
Minh Hiếu
6 tháng 1 2022 lúc 23:10

Sửa lại đề nha:

 \(\dfrac{1}{x^2+9x+12}thành\dfrac{1}{x^2+9x+20}\)

Minh Hiếu
6 tháng 1 2022 lúc 23:12

⇔ \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

⇔ \(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)

⇔ \(\dfrac{4}{x^2+8x+12}=\dfrac{1}{8}\)

⇔ \(x^2+8x+12=32\)

⇔ \(x^2+8x-20=0\)

⇔ \(\left(x-2\right)\left(x+10\right)=0\)

⇔ \(\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:19

a) Tam thức bậc hai \(f\left( x \right) = 2{x^2} - 15x + 28\) có hai nghiệm phân biệt là \({x_1} = \frac{7}{2};{x_2} = 4\)

và có \(a = 2 > 0\) nên \(f\left( x \right) \ge 0\) khi thuộc hai nửa khoảng \(\left( { - \infty ;\frac{7}{2}} \right];\left[ {4; + \infty } \right)\)

Vậy tập nghiệm của bất phương trình \(2{x^2} - 15x + 28 \ge 0\) là \(\left( { - \infty ;\frac{7}{2}} \right] \cup \left[ {4; + \infty } \right)\)

b) Tam thức bậc hai \(f\left( x \right) =  - 2{x^2} + 19x + 255\) có hai nghiệm phân biệt là \({x_1} =  - \frac{{15}}{2};{x_2} = 17\)

và có \(a =  - 2 < 0\) nên \(f\left( x \right) > 0\) khi thuộc khoảng \(\left( { - \frac{{15}}{2};17} \right)\)

Vậy tập nghiệm của bất phương trình \( - 2{x^2} + 19x + 255 > 0\) là \(\left( { - \frac{{15}}{2};17} \right)\)

c) \(12{x^2} < 12x - 8 \Leftrightarrow 12{x^2} - 12x + 8 < 0\)

Tam thức bậc hai \(f\left( x \right) = 12{x^2} - 12x + 8\) có \(\Delta  =  - 240 < 0\) và \(a = 12 > 0\)

nên \(f\left( x \right) = 12{x^2} - 12x + 8\) dương với mọi x

Vậy bất phương trình \(12{x^2} < 12x - 8\) vô nghiệm

d) \({x^2} + x - 1 \ge 5{x^2} - 3x \Leftrightarrow -4{x^2} + 4x - 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = -4{x^2} + 4x - 1\) có \(\Delta  = 4^2 - 4.(-4).(-1)\) 

Do đó tam thức bậc hai có nghiệm kép \({x_1} = {x_2}= \frac{1}{2}\) và a = - 4 < 0

Vậy bất phương trình \({x^2} + x - 1 \ge 5{x^2} - 3x\) có tập nghiệm S = {\(\frac{1}{2}\)}

Persmile
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 10 2021 lúc 15:33

\(a,=\left(x+8-x+2\right)^2=10^2=100\\ b,=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\\ c,=x^3+1-x^3+1=2\)

Nguyễn Thùy Linh
Xem chi tiết
DakiDaki
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 8:29

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

Nguyễn Ngọc Huy Toàn
14 tháng 2 2022 lúc 8:30

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)

Nguyễn Ngọc Huy Toàn
14 tháng 2 2022 lúc 8:34

7.

\(\Leftrightarrow x^2+2x-15=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

8.\(\Leftrightarrow x^4+x^3+4x^3+4x^2=0\)

\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0;x=-4\end{matrix}\right.\)

9.\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(3-2x\right)\)

\(\Leftrightarrow x+2=3-2x\)

\(\Leftrightarrow3x=1\Leftrightarrow x=\dfrac{1}{3}\)