Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NknMiku
Xem chi tiết
Binh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 22:24

b: \(B=\sqrt{x^2-8x+18}-1\)

\(=\sqrt{\left(x-4\right)^2+2}-1\)

(x-4)^2+2>=2

=>\(\sqrt{\left(x-4\right)^2+2}>=\sqrt{2}\)

=>B>=căn 2-1

Dấu = xảy ra khi x=4

a: \(D=3+\sqrt{2x^2-8x+33}\)

\(=3+\sqrt{2\left(x^2-4x+\dfrac{33}{2}\right)}\)

\(=\sqrt{2\left(x^2-4x+4\right)+25}+3\)

\(=\sqrt{2\left(x-2\right)^2+25}+3>=5+3=8\)

Dấu = xảy ra khi x=2

Binh
26 tháng 7 2023 lúc 22:22

Cứu

Binh
26 tháng 7 2023 lúc 22:24

Huhu........

 

My Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
21 tháng 11 2016 lúc 18:10
\(N=\frac{8x+12}{x^2+4}=\frac{-\left(x^2+4\right)+\left(x^2+8x+16\right)}{x^2+4}=\frac{\left(x+4\right)^2}{x^2+4}-1\ge-1\)

Vậy minN = -1 khi x = -4

\(N=\frac{4\left(x^2+4\right)-4\left(x^2-2x+1\right)}{x^2+4}=-\frac{4\left(x-1\right)^2}{x^2+4}+4\le4\)

Vậy maxN = 4 khi x = 1

Lee Min Ho
27 tháng 7 2017 lúc 20:33

Vậy maxN = 4 khi x=1

D_ _ Bê Đe
29 tháng 1 2018 lúc 20:55

Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già Tôi bị bê đê con dê già 

Tâm Trần Hiếu
Xem chi tiết
Hoàng Thanh Tuấn
10 tháng 6 2017 lúc 7:02
ĐK \(x^2-8x+18\ge0\Rightarrow x^2-8x+16+2\ge0\)\(\Rightarrow\left(x-4\right)^2+2\ge2\forall x\)TXD : RĐK \(9x^2-6x+1>0\Rightarrow\left(3x-1\right)^2>0\forall x\ne\frac{1}{3}\)\(\Rightarrow TXD=R|\left\{\frac{1}{3}\right\}\)
Mạnh Đoàn
Xem chi tiết
Edogawa Conan
Xem chi tiết
Kudo Shinichi
1 tháng 12 2019 lúc 11:57

A= \(|\sqrt{x^2}+\sqrt{1}-9|+|\sqrt{x^2}+\sqrt{1}-12|\)

A=\(|x+1-9|+|x+1-12|\)

A=\(|x-8|+|x-11|\)

TH1: x<0

=> A= (-x)-8 + (-x) -11

A=(-x-x)-(8+11)

A=-2x-19

TH2:x>0

=> A=x-8+x-11

A=(x+x)-(8+11)

A=2x-19

Tương tự x=0 sau đấy cậu KL nhé, phần sau mình lười

    
Khách vãng lai đã xóa
Kiệt Nguyễn
1 tháng 12 2019 lúc 12:14

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\):

\(\left|\sqrt{x^2+1}-9\right|+\left|\sqrt{x^2+1}-12\right|\)\(=\left|\sqrt{x^2+1}-9\right|+\left|12-\sqrt{x^2+1}\right|\)

\(\ge\left|\left(\sqrt{x^2+1}-9\right)+\left(12-\sqrt{x^2+1}\right)\right|=3\)

Vậy \(A_{min}=3\Leftrightarrow\left(\sqrt{x^2+1}-9\right)\left(12-\sqrt{x^2+1}\right)\ge0\)

\(TH1:\hept{\begin{cases}\sqrt{x^2+1}-9\ge0\\12-\sqrt{x^2+1}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\ge81\\x^2+1\le144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ge80\\x^2\le143\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{80}\le x\le\sqrt{143}\\-\sqrt{80}\ge x\ge-\sqrt{143}\end{cases}}\)

\(TH2:\hept{\begin{cases}\sqrt{x^2+1}-9\le0\\12-\sqrt{x^2+1}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+1\le81\\x^2+1\ge144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2\le80\\x^2\ge143\end{cases}}\left(L\right)\)

Khách vãng lai đã xóa
ngọc linh
Xem chi tiết
Nguyễn Hoàng Minh
31 tháng 12 2021 lúc 22:03

Đề sai à? check lại đề đi

ngọc linh
Xem chi tiết
Trên con đường thành côn...
1 tháng 1 2022 lúc 19:33

ĐKXĐ: \(x-2013\ge0\Leftrightarrow x\ge2013\)

Ta có:

\(A=\sqrt{x-2013-2\sqrt{x-2013}+1}+\sqrt{x-2013-90\sqrt{x-2013}+2025}\)

\(=\sqrt{\left(\sqrt{x-2013}-1\right)^2}+\sqrt{\left(\sqrt{x-2013}-45\right)^2}\)

\(=\left|\sqrt{x-2013}-1\right|+\left|\sqrt{x-2013}-45\right|\)

\(=\left|\sqrt{x-2013}-1\right|+\left|45-\sqrt{x-2013}\right|\)

\(\ge\left|\sqrt{x-2013}-1+45-\sqrt{x-2013}\right|\)

\(=\left|-1+45\right|=\left|44\right|=44\)

Vậy GTNN của A là 44, đạt được khi và chỉ khi \(\left(\sqrt{x-2013}-1\right)\left(45-\sqrt{x-2013}\right)\ge0\)

\(\Leftrightarrow1\le\sqrt{x-2013}\le45\)

\(\Leftrightarrow1\le x-2013\le2025\)

\(\Leftrightarrow2014\le x\le4038\left(tm\right)\)

Quốc Lê Minh
Xem chi tiết
Trần Minh Hoàng
2 tháng 10 2018 lúc 16:13

Ta có:

\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)

\(=\sqrt{\left(2x\right)^2-2.2x.3+3^2}+\sqrt{\left(2x\right)^2-2.2x.2+2^2}\)

\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)

\(=\left|2x-3\right|+\left|2x-2\right|\)

\(=\left|2x-3\right|+\left|2-2x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(P\ge\left|\left(2x-3\right)+\left(2-2x\right)\right|=\left|-1\right|=1\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)

Vậy MinP = 1 \(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)

Nguyễn Thị Bích Ngọc
12 tháng 6 2019 lúc 13:58

\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)

\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)

\(=|2x-3|+|2-2x|\)

=>\(P\ge|\left(2x-3\right)+\left(2-2x\right)|=|-1|=1\)

l҉o҉n҉g҉ d҉z҉
13 tháng 9 2020 lúc 15:41

\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)

\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)

\(=\left|2x-3\right|+\left|2x-2\right|\)

\(=\left|3-2x\right|+\left|2x-2\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(P=\left|3-2x\right|+\left|2x-2\right|\ge\left|3-2x+2x-2\right|=\left|1\right|=1\)

Đẳng thức xảy ra khi \(ab\ge0\)

=> \(\left(3-2x\right)\left(2x-2\right)\ge0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}3-2x\ge0\\2x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)

2. \(\hept{\begin{cases}3-2x\le0\\2x-2\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2x\le-3\\2x\le2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )

=> MinP = 1 <=> \(1\le x\le\frac{3}{2}\)

Khách vãng lai đã xóa