tìm x biết:
\(\left(8.x-1\right)^{2n+1}=5^{2n+1}\) (n∈N)
1CMR: \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8 với mọi n thuộc z
2a) Tìm GTNN của A=\(x^2+4x+5\)
b)Tìm x,y biết : \(x^2+y^2-4x+6y+13=0\)
2 a) x2 + 4x + 5
= x2 + 2.x.2 + 22 + 1
=(x + 2)2 +1
vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x
suy ra A luôn lớn hơn hoặc bằng 1
dấu '=' xảy ra khi x+2=0 suy ra x=-2
vậy GTNN của A là 1 khi x= -2
b)x2 + y2 - 4x +6y +13=0
(x2 - 4x +4)+(y2 + 6y +9)=0
(x-2)2 + (y+3)2 =0
vì (x - 2)2 lớn hơn hoặc bằng 0 với mọi x
(y+3)2 lớn hơn hoặc bằng 0 với mọi y
nên để (x-2)2 + (y+3)2 =0
thì x-2=0 và y+3=0
x=2; y= -3
Tìm hệ số của số hạng chứa x20 trong khi khai triển nhị thức \(\left(\dfrac{1}{x^3}+x^2\right)^n\)
Biết: \(C^{n+1}_{2n+1}+C^{n+2}_{2n+1}+C^{n+3}_{2n+1}+...+C^{2n}_{2n+1}=2^{100}-1\)
Ai giải giùm bài này với !!!
Giả thiết tương đương:
\(C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n}+C_{2n+1}^{2n+1}=2^{100}\) (thay \(1=C_{2n+1}^{2n+1}\))
Mặt khác:
\(C_{2n+1}^{2n+1}=C_{2n+1}^0\)
\(C_{2n+1}^{2n}=C_{2n+1}^1\)
....
\(C_{2n+1}^{n+1}=C_{2n+1}^n\)
Cộng vế:
\(\Rightarrow C_{2n+1}^{n+1}+C_{2n+1}^{n+2}+...+C_{2n+1}^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^n\)
\(\Rightarrow2\left(C_{2n+1}^{n+1}+...+C_{2n+1}^{2n+1}\right)=C_{2n+1}^0+C_{2n+1}^1+...+C_{2n+1}^{2n+1}\)
\(\Rightarrow2.2^{100}=2^{2n+1}\) (đẳng thức cơ bản: \(\sum\limits^n_{k=0}C_n^k=2^n\))
\(\Leftrightarrow2^{101}=2^{2n+1}\)
\(\Rightarrow2n+1=101\)
\(\Rightarrow n=50\)
SHTQ trong khai triển: \(C_{50}^k.\left(x^{-3}\right)^k.\left(x^2\right)^{50-k}=C_{50}^kx^{100-5k}\)
\(100-5k=20\Rightarrow k=16\)
Hệ số: \(C_{50}^{16}\)
1. Tìm x;y nguyên tố biết : 59x + 46y=2004
2. CMR: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{1}{2^n}\) với n thuộc N*
a, 59x + 46y = 2004
Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn
=> x là số chẵn, mà x là số nguyên tố
=> x = 2
=> 2.59 + 46y = 2004
=> 46y = 2004 ‐ 118
=> 46y = 1886
=> y = 1886:46 => y = 41
Vậy x = 2; y = 41
bài 1 : tìm x: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x=y^2\)
bài 2: tìm x : \(\left(8x-1\right)^{2n+1}=5^{2n+1}\)(n thuộc N)
Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.
mấy anh chị ơi em có bài nâng coa giúp em với
n+3:n+1
2n+5;n+1
tìm x biết\(35-3\left(x\right)=5\left(2^3-4\right)\)
35 - 3(x) = 5. (23-4)
35 - 3x = 5.(8-4)
35 - 3x = 5.4
35 - 3x = 20
3x = 35-20
3x = 15
x = 15 : 3
x = 5
35 - 3(x) = 5 (23 -4)
35 - 3x = 5.(8 - 4 )
35 - 3x = 5.4
35 - 3x = 20
3x = 35 - 20
3x = 15
x = 15 : 3
x = 3
Vậy x = 3
n+3 : n+1
(n+1) + 2 : n+1
2 : n+1 ( vì n+1 : n+1 )
n+1 E {1,2}
n E { 0 ,1 }
Vậy n = 1 , n = 0
Chứng minh rằng với mọi n thuộc Z thì :
a) \(\left(n^2+3n-1\right).\left(n+2\right)-n^3+2⋮5\)
b) \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
c) \(\left(2n-1\right).3-\left(2n-1\right)⋮8\)
d) \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
cho f(x)=(x2+x+1)2+1 với mọi x thuộc N.
a)tìm x để f(x) là số tự nhiên
b)thu gọn:
Pn=\(\frac{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}{f\left(2\right).f\left(4\right).....f\left(2n\right)}\) với n thuộc N*
Tìm n , biết
\(\left(8x-1\right)^{2n+1}=5^{2n+1}\)
\(\left(8x-1\right)^{2n+1}=5^{2n+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow x=\frac{3}{4}\)
\(\left(8x-1\right)^{2n+1}=5^{2n+1}\)
\(\Rightarrow8x-1=5\)
\(\Rightarrow8x=6\)
\(\Rightarrow x=\frac{3}{4}\)
Vậy \(x=\frac{3}{4}\)