Tm giác ABC vuông tại A ,đường cao AH Biết HB=9cm ,HC =16cm .Tính AB,AC
Cho tam giác ABC vuông tại A, kẻ đường cao AH (H thuộc cạnh BC). Biết HB = 9cm, HC = 16cm. Tính độ dài: AH, AB.
Cho tam giác ABC vuông tại A, Đường cao AH .Gọi D,E là hình chiếu của H trên cạnh AB,AC
a)Giả sử HB =9cm ;HC=16cm ,Tính AB,AC,DE
\(a,BC=HB+HC=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=225\\AC^2=CH\cdot BC=400\\AH^2=BH\cdot CH=144\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{BAC}=90^0\) nên ADHE là hcn
Do đó \(DE=AH=12\left(cm\right)\)
Cho Δ ABC vuông tại A , đường cao AH . Biết HB = 9cm, HC = 16cm .
a) Tính AB, AC , AH
b) Gọi D và E lần lượt là hình chiếu vuông góc của H trên AB và AC. Tứ giác ADHE là hình gì ? Chứng minh .
a) + AH2 = BH.CH = 9.16 = 144 AH = 12cm
+ AB2 = BH. BC = 9.25 AB = 15cm
+ AC2 = CH.BC = 16.25 AC = 20cm
b) Chứng minh được tứ giác ADHE là hình chữ nhật
c) +HD.AB = HA.HB HD = HA.HB/AB= 12.9/15 = 7,2cm
+HE.AC = HA.HC HE = HA.HC /AC = 12.16/20 = 9,6cm
+ Chu vi ADHE: (HD + HE ).2 = (7,2 + 9,6).2 = 33,6(cm)
+ SADHE = HD.HE = 7,2. 9,6 = 69,12(cm2)
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
Cho tam giác ABC vuông tại A . Biết AB = 12cm , AC = 16cm,phân giác AD , đường cao AH . Tính HD , HB , HC.
Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)
Cho tam giác ABC vuông tại A, Đường cao AH .Gọi D,E là hình chiếu của H trên cạnh AB,AC
a)Giả sử HB =9cm ;HC=16cm ,Tính AB,AC,DE
b)BD=BH*2
c)BD.CE.BC=AH*3
Cho tam giác ABC vuông tại A, đường cao AH, HB=9cm; HC=16cm. a) chứng minh : AB^2 = HB.BC b) Tính AB; AC; AH c) Phân giác của góc B cắt AH tại I, từ I kẻ đường thẳng song song với BC cắt AC tại K. Chứng minh AK/KC = AB/HC d) Gọi E là giao điểm của BI với AC chứng minh tam giác KIE đồng dạng với tam giác ABI
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
Câu 1: Cho tam giác ABC vuông tại A , đường cao AH
a) Cho biết HB=9cm,HC=16cm. Tính các độ dài AH,AB=AC
b) Chứng minh các hệ thức AH2=HB.HC, AB2=BC.BH
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
1)
a) Xét ΔABC có
\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)
Vậy: AH=3,6cm
b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)
hay CH=2,7(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH=BC-CH=7,5-2,7=4,8(cm)
Vậy: BH=4,8cm; CH=2,7cm
1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go
=>\(\Delta ABC\) vuông tại A
Ta có: AB.AC=BC.AH
=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\) (cm)
b)Ta có:AB2=BC.BH
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{7,5}=4,8\) (cm)
Ta có:BH+CH=BC
=>CH=BC-BH=7,5-4,8=2,7 (cm)
Cho tam giác ABC vuông tại A, đường cao AH, AC=16cm, HB=7,2cm. Tính AH, AB, BC, HC
AC^2=HC*CB
=>HC(HC+7,2)=16^2=256
=>HC^2+7,2*HC-256=0
=>HC=12,8cm
AH=căn 12,8*7,2=9,6cm
BC=12,8+7,2=20cm
AB=căn 7,2*20=12(cm)
AC=căn 12,8*20=16(cm)