Cho a+2b+3c>=20
Tìm Min A= a+b+c+\(\dfrac{3}{a}\)+\(\dfrac{9}{2b}\)+\(\dfrac{4}{c}\)
Cho a, b, c > 0 và \(a+2b+3c\ge20\) . Tìm MIN của :
A = \(a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
a+4/a>=2*căn a*4/a=4
b+9/b>=2*căn b*9/b=6
c+16/c>=2*căn c*16/c=8
=>3a/4+b/2+c/4+3/a+9/2b+4/c>=3+3+2=8
a+2b+3c>=20
=>a/4+b/2+3c/4>=5
=>S>=13
Dấu = xảy ra khi a=2; b=3; c=4
Cho a,b,c > 0 và a + 2b + 3c > hoặc bằng 20 . Tìm min của \(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
Lời giải:
Biến đổi $A$ :
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}=\frac{1}{4}(a+2b+3c)+\left(\frac{3a}{4}+\frac{3}{a}\right)+\left (\frac{b}{2}+\frac{9}{2b}\right)+\left (\frac{c}{4}+\frac{4}{c}\right)\)
Ta có: \(\frac{1}{4}(a+2b+3c)\geq \frac{20}{4}=5\)
Áp dụng BĐT AM-GM: \(\left\{\begin{matrix} \frac{3a}{4}+\frac{3}{a}\geq 3\\ \frac{b}{2}+\frac{9}{2b}\geq 3\\ \frac{c}{4}+\frac{4}{c}\geq 2\end{matrix}\right.\)
Do đó \(A\geq 5+3+3+2=13\) hay \(A_{\min}=13\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a=2\\ b=3\\ c=4\end{matrix}\right.\)
Mấu chốt của bài toán là cách tìm điểm rơi.
1.Cho\(\left\{{}\begin{matrix}a,b,c>0\\a+2b+3c=20\end{matrix}\right.\)Tìm GTNN
P=\(2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(P=\dfrac{5a+10b+15c}{4}+\left(\dfrac{3}{a}+\dfrac{3a}{4}\right)+\left(\dfrac{9}{2b}+\dfrac{b}{2}\right)+\left(\dfrac{4}{c}+\dfrac{c}{4}\right)\)
\(\ge\dfrac{5\left(a+2b+3c\right)}{4}+2\sqrt{\dfrac{3}{a}.\dfrac{3a}{4}}+2\sqrt{\dfrac{9}{2b}.\dfrac{b}{2}}+2\sqrt{\dfrac{4}{c}.\dfrac{c}{4}}\)
\(\Leftrightarrow P\ge\dfrac{5.20}{4}+3+3+2=33\)
Dấu "=" xảy ra khi a=2;b=3;c=4
Vậy \(P_{min}=33\)
Cho a,b,c >0 thoả mãn : a+2b+3c\(\ge20\). Tìm Min: p =a+b+c+\(\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
+) Cho các số dương a,b,c thỏa mãn: a+2b+3c=3
CM: \(\sqrt{\dfrac{2ab}{2ab+9c}}+\sqrt{\dfrac{2bc}{2bc+a}}+\sqrt{\dfrac{ac}{ac+2b}}\le\dfrac{3}{2}\)
+) Cho a,b,c >0 và a+b+c≤3
Tìm min P\(=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
cho a;b;c > 0, tìm min :
\(P=\dfrac{a}{2b+3c}+\dfrac{b}{2c+3a}+\dfrac{c}{2a+3b}\)
\(P=\dfrac{a}{2b+3c}+\dfrac{b}{2c+3a}+\dfrac{c}{2a+3b}\left(a;b;c>0\right)\)
\(\Leftrightarrow P=\dfrac{a^2}{2ab+3ac}+\dfrac{b^2}{2bc+3ab}+\dfrac{c^2}{2ac+3bc}\)
Áp dụng bất đẳng thức \(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)
\(\Leftrightarrow P\ge\dfrac{\left(a+b+c\right)^2}{5\left(ab+bc+ca\right)}=\dfrac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}\left(1\right)\)
Theo bất đẳng thức Cauchy :
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\left(1\right)\Leftrightarrow P=\dfrac{a^2}{2ab+3ac}+\dfrac{b^2}{2bc+3ab}+\dfrac{c^2}{2ac+3bc}\ge\dfrac{ab+bc+ca+2\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}\)
\(\Leftrightarrow P\ge\dfrac{3\left(ab+bc+ca\right)}{5\left(ab+bc+ca\right)}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy \(Min\left(P\right)=\dfrac{3}{5}\left(tại.a=b=c\right)\)
Bổ sung chứng minh Bất đẳng thức :
\(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)
Theo BĐT Bunhiacopxki :
\(\left(\dfrac{a}{\sqrt[]{m}}\right)^2+\left(\dfrac{b}{\sqrt[]{n}}\right)^2+\left(\dfrac{c}{\sqrt[]{q}}\right)^2.\left[\left(\sqrt[]{m}\right)^2+\left(\sqrt[]{n}\right)^2+\left(\sqrt[]{q}\right)^2\right]\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{q}\ge\dfrac{\left(a+b+c\right)^2}{m+n+q}\)
Tìm các số a,b,c biết rằng : \(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và a+2b-3c = -20
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\\ \Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
Tìm các số a , b , c , biết rằng \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a + 2b - 3c = - 20
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=5\\\dfrac{b}{3}=5\\\dfrac{c}{4}=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)