Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
helpmeplsss
Xem chi tiết
Minh Hiếu
15 tháng 9 2023 lúc 21:00

a) \(x\ge0\)

b) \(x\le0\)

c) \(x\le4\)

d) \(\sqrt{x^2+1}>0\forall x\) => \(x\in R\)

乇尺尺のレ
15 tháng 9 2023 lúc 21:01

a)đẻ \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì

\(\dfrac{x}{3}\ge0\\ \Leftrightarrow x\ge0\)

b) để \(\sqrt{-5x}\) có nghĩa thì 

\(-5x\ge0\\ \Leftrightarrow x\le0\)

c) để \(\sqrt{4-x}\) có nghĩa thì 

\(4-x\ge0\\ \Leftrightarrow x\le4\)

d) để \(\sqrt{1+x^2}\) có nghĩa thì

\(1+x^2\ge0\forall x\in R\)

Trần thị vân
Xem chi tiết
Huong San
25 tháng 8 2018 lúc 21:39

\(a,\sqrt{9x^2}=2x+1\\ < =>\sqrt{\left(3x\right)^2}=2x+1\\ < =>\left|3x\right|=2x+1\)

Ta có:\(\left|3x\right|=3xkhi3x\ge0\)

\(\left|3x\right|=-3xkhi3x< 0\)

(*) 3x\(\ge\)0, ta có phương trình:

\(3x=3x+1\\ < =>3x-2x=1\\ < =>x=1\)

(*)3x<1, ta có phương trình:

\(-3x=2x+1\\ < =>-3x-2x=1\\ < =>-5x=1\\ < =>x=-\dfrac{1}{5}\)

\(b,\sqrt{x^4}=7\\ < =>\sqrt{\left(x^2\right)^2}=7\\ < =>\left|x^2\right|=7\\ < =>x^2=7\\ < =>x=\pm\sqrt{7}\)

dương thị trúc tiên
Xem chi tiết
Lấp La Lấp Lánh
21 tháng 10 2021 lúc 7:42

a) ĐKXĐ: \(x+5\ge0\Leftrightarrow x\ge-5\)

b) ĐKXĐ: \(7-x\ge0\Leftrightarrow x\le7\)

c) ĐKXĐ: \(x+3>0\Leftrightarrow x>-3\)

d) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)

nood
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 20:11

a: ĐKXĐ: (8x^2+3)/(x^2+4)>=0

=>\(x\in R\)

b: ĐKXĐ: -3(x^2+2)>=0

=>x^2+2<=0(vô lý)

d: ĐKXĐ: -x^2-2>2

=>-x^2>2

=>x^2<-2(vô lý)

d: ĐKXĐ: 4(3x+1)>=0

=>3x+1>=0

=>x>=-1/3

YangSu
29 tháng 6 2023 lúc 20:14

\(a,\sqrt{\dfrac{8x^2+3}{4+x^2}}\) có nghĩa \(\Leftrightarrow\dfrac{8x^2+3}{4+x^2}\ge0\Leftrightarrow4+x^2\ge0\) (luôn đúng)

Vậy căn thức trên có nghĩa với mọi x.

\(b,\sqrt{-3\left(x^2+2\right)}\) có nghĩa \(\Leftrightarrow-3\left(x^2+2\right)\ge0\Leftrightarrow x^2+2\le0\Leftrightarrow x^2\le-2\) (vô lí)

Vậy không có giá trị x để căn thức có nghĩa.

\(c,\sqrt{4\left(3x+1\right)}\) có nghĩa \(\Leftrightarrow3x+1\ge0\Leftrightarrow3x\ge-1\Leftrightarrow x\ge-\dfrac{1}{3}\) 

Vậy không có giá trị x để căn thức có nghĩa.

\(d,\sqrt{\dfrac{5}{-x^2-2}}\) có nghĩa  \(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\) (vô lí)

Vậy không có giá trị x để căn thức có nghĩa.

lmao lmao
Xem chi tiết
Trần Minh Hoàng
25 tháng 5 2021 lúc 18:59

ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)

Trần Minh Hoàng
25 tháng 5 2021 lúc 19:18

b) ĐKXĐ: \(-1\le x\le3\)

c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).

d) ĐKXĐ: \(x< \dfrac{3}{5}\).

Acher Gilgamesh
Xem chi tiết
Lê Thị Khánh Huyền
Xem chi tiết
Minh Nguyen
28 tháng 7 2020 lúc 15:12

Bài 2 :

a) Sửa đề :

 \(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(A=\sqrt{3}-1-\sqrt{3}\)

\(A=-1\)

b) \(B=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(B=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(B=\sqrt{2}+1-\sqrt{2}+1\)

\(B=2\)

c) \(C=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=2-\sqrt{3}+2+\sqrt{3}\)

\(C=4\)

d) \(D=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(D=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(D=4+\sqrt{7}-\sqrt{7}\)

\(D=4\)

Khách vãng lai đã xóa
Minh Nguyen
28 tháng 7 2020 lúc 15:00

Bài 1 :

a) Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) có nghĩa

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

TH1 :\(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow x\ge3}\)

TH2 : \(\hept{\begin{cases}x-1\le0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le3\end{cases}\Leftrightarrow}x\le1}\)

Vậy để biểu thức có nghĩa thì \(\orbr{\begin{cases}x\ge3\\x\le1\end{cases}}\)

b) Để \(\sqrt{\frac{1-x}{x+2}}\)có nghĩa

\(\Leftrightarrow\frac{1-x}{x+2}\ge0\)

TH1 : \(\hept{\begin{cases}1-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Leftrightarrow}-2\le x\le1}\)

TH2 : \(\hept{\begin{cases}1-x\le0\\x+2\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le-2\end{cases}\Leftrightarrow x\in\varnothing}\)

Vậy để biểu thức có nghĩa thì \(-2\le x\le1\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
30 tháng 7 2020 lúc 20:39

Ngoc Minh 

Câu 1b) Chú ý điều kiện x khác -2 nữa em ơi!

Thường thì sẽ giải như này: 

TH1: \(\hept{\begin{cases}1-x\ge0\\x+2>0\end{cases}}\)....

Th2: \(\hept{\begin{cases}1-x\le0\\x+2< 0\end{cases}}\).....

Chú ý nhé!

Khách vãng lai đã xóa
9A Lớp
Xem chi tiết
Lê Hoàng Danh
25 tháng 12 2021 lúc 22:47

Ủa câu này bạn cho bên trong căn lớn hơn 0 thôi, có phân số thì thêm đk mẫu khác 0 thôi ^^

Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 12:08

a: ĐKXĐ: x>-3

b: ĐKXĐ: \(\left[{}\begin{matrix}x>=3\\x< =1\end{matrix}\right.\)

nguyễn công huy
Xem chi tiết