Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anxiety
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 12 2018 lúc 21:28

\(VT=\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2a\sqrt{bc}}+\dfrac{1}{2b\sqrt{ac}}+\dfrac{1}{2c\sqrt{ab}}\)

\(VT\le\dfrac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2abc}\)

Mặt khác ta luôn có:

\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)

\(\Rightarrow2\left(a+b+c\right)-2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)\ge0\)

\(\Rightarrow\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\le a+b+c\)

\(\Rightarrow VT\le\dfrac{a+b+c}{2abc}\)

Dấu "=" khi \(a=b=c\)

Hoàng Ngọc Tuyết Nung
Xem chi tiết
Akai Haruma
20 tháng 6 2018 lúc 10:53

Lời giải:

Áp dụng BĐT AM-GM cho các số dương:

\(a^2+bc\geq 2\sqrt{a^2bc}; b^2+ac\geq 2\sqrt{b^2ac}; c^2+ab\geq 2\sqrt{c^2ab}\)

Do đó:

\(\text{VT}=\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}\)

hay \(\text{VT}\leq \frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}(*)\)

Tiếp tục áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} \sqrt{bc}\leq \frac{b+c}{2}\\ \sqrt{ac}\leq \frac{a+c}{2}\\ \sqrt{ab}\leq \frac{a+b}{2}\end{matrix}\right.\Rightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}\leq a+b+c(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\leq \frac{a+b+c}{2abc}\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c\)

Phượng Hoàng
Xem chi tiết
Luân Đào
18 tháng 1 2019 lúc 10:48

Ta có:

\(\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{a^2bc}}=\dfrac{1}{2a\sqrt{bc}}=\dfrac{\sqrt{bc}}{2abc}\)

Tương tự:

\(\Rightarrow VT\le\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\dfrac{a+b+c}{2abc}\)

Dấu "=" khi a=b=c

Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 19:42

\(\dfrac{a+b}{ab+c^2}=\dfrac{\left(a+b\right)^2}{\left(ab+c^2\right)\left(a+b\right)}=\dfrac{\left(a+b\right)^2}{b\left(a^2+c^2\right)+a\left(b^2+c^2\right)}\le\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(b^2+c^2\right)}\)

Tương tự: 

\(\dfrac{b+c}{bc+a^2}\le\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}\) ; \(\dfrac{c+a}{ca+b^2}\le\dfrac{c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}\)

Cộng vế:

\(VT\le\dfrac{1}{a}\left(\dfrac{b^2}{b^2+c^2}+\dfrac{c^2}{b^2+c^2}\right)+\dfrac{1}{b}\left(\dfrac{a^2}{a^2+c^2}+\dfrac{c^2}{a^2+c^2}\right)+\dfrac{1}{c}\left(\dfrac{a^2}{a^2+b^2}+\dfrac{b^2}{a^2+b^2}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Phan PT
Xem chi tiết
Akai Haruma
26 tháng 1 2021 lúc 13:47

Lời giải:Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:

\(\frac{bc}{a^2+1}=\frac{bc}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}.\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}\leq \frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)

Hoàn toàn tương tự với các phân thức còn lại, ta có:

\(P\leq \frac{1}{4}\left(\frac{b^2+a^2}{a^2+b^2}+\frac{c^2+a^2}{a^2+c^2}+\frac{b^2+c^2}{b^2+c^2}\right)=\frac{3}{4}\)

(đpcm)

Dấu "=" xảy ra khi $a=b=c=\sqrt{\frac{1}{3}}$

 

dia fic
Xem chi tiết
Hải Anh
27 tháng 12 2020 lúc 9:59

c=c.1 thay 1 bằng a+b+c xong cô si

 

Phạm Lợi
Xem chi tiết
đề bài khó wá
3 tháng 1 2019 lúc 18:49

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

Akai Haruma
4 tháng 1 2019 lúc 0:56

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Akai Haruma
4 tháng 1 2019 lúc 0:59

Bài 2:

Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)

\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)

\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Tobot Z
Xem chi tiết
Akai Haruma
19 tháng 6 2021 lúc 22:42

Lời giải:

Áp dụng BĐT AM-GM:

\(\text{VT}\leq \frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

\(\leq \frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{a+c}{2}}{2abc}=\frac{a+b+c}{2abc}=\text{VP}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

 

Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 13:57

Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại

Ta có:

\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Mặt khác:

\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)

\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)

\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)

\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)

Đúng theo AM-GM:

\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)