Tìm x
a) \(5x\left(x-2000\right)-x+2000=0\)
b) \(x^3-13x=0\)
Tìm x biết :
a) \(5x\left(x-2000\right)-x+2000=0\)
b) \(x^3-13x=0\)
Bài giải:
a) 5x(x -2000) - x + 2000 = 0
5x(x -2000) - (x - 2000) = 0
(x - 2000)(5x - 1) = 0
Hoặc 5x - 1 = 0 => 5x = 1 => x =
Vậy x = ; x = 2000
b) x3 – 13x = 0
x(x2 - 13) = 0
Hoặc x = 0
Hoặc x2 - 13 = 0 => x2 = 13 => x = ±√13
Vậy x = 0; x = ±√13
a) 5x(x-2000)-x+2000=0
5x(x-2000)-(x-2000)=0
(x-2000)(5x-1)=0
\(\Leftrightarrow\) x-2000=0 hoặc 5x-1=0
\(\Leftrightarrow\) x=2000 hoặc x=\(\dfrac{1}{5}\)
b) \(x^3-13x=0\)
\(x\left(x^2-13\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-13=0\)
\(\Leftrightarrow x=0\) hoặc \(x=13\) hoặc \(x=-13\)
a) 5x(x -2000) - x + 2000 = 0
5x(x -2000) - (x - 2000) = 0
(x - 2000)(5x - 1) = 0
Hoặc 5x - 1 = 0 => 5x = 1 => x = 1515
Vậy x = 1515; x = 2000
b) x3 – 13x = 0
x(x2 - 13) = 0
Hoặc x = 0
Hoặc x2 - 13 = 0 => x2 = 13 => x = ±√13
Vậy x = 0; x = ±√13
Tìm x, biết:
a)\(5x\left(x-2000\right)-x+2000=0\)
b)\(x^3-13x=0\)
a ) \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-1=0\\x-2000=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=2000\end{array}\right.\)
b ) \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2-13=0\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{13}\\x=-\sqrt{13}\end{array}\right.\end{array}\right.\)
Tìm x, biết :
a, \(5x\left(x-2000\right)-x+2000=0\)
b, \(x^3-13x=0\)
Bài 5: Tìm x (Giải phương trinh)
a)x^3-13x=0
b) 5x(x – 2000) – x + 2000 = 0
c) 2x(x – 2) + 3(x – 2) = 0
d) x + 1 = (x + 1)2
e) x + 5x2 = 0
f) x3 + x = 0
Bài 5: Tìm x (Giải phương trình)
a)x^3-13x=0 b) 5x(x – 2000) – x + 2000 = 0
c) 2x(x – 2) + 3(x – 2) = 0 d) x + 5x2 = 0
d) x + 1 = (x + 1)2 e) x3 + x = 0
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) Ta có: \(2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)
d) Ta có: \(5x^2+x=0\)
\(\Leftrightarrow x\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{5}\end{matrix}\right.\)
Tìm x
a) \(5x\left(x-2000\right)-x+2000=0\)
b) \(x^3-13x=0\)
a,\(5x\left(x-2000\right)-x+2000=0\)
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
b,\(x^3-13x=0\)
\(\Rightarrow x.x^2-13x=0\)
\(\Rightarrow x\left(x^2-13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)
Tìm x, biết:
a) 5x(x-2000) - x + 2000 = 0
b) x3 - 13x = 0
a) 5x(x - 2000) - x + 2000 = 0
=> 5x(x - 2000) - (x - 2000) = 0
=> (x - 2000).(5x - 1) = 0
=> x - 2000 = 0 hoặc 5x - 1 = 0
=> x = 2000 hoặc 5x = 1
=> x = 2000 hoặc x = 1/5
b) x3 - 13x = 0
=> x.(x2 - 13) = 0
=> x = 0 hoặc x2 - 13 = 0
=> x = 0 hoặc x2 = 13, vô lí
=> x = 0
a) 5x(x-2000)-(x-2000)=(5x-1)(x-2000)=0 nên x=1/5 hoặc x=2000
b)\(x^3-13x=x\left(x^2-13\right)=0\)\(\Rightarrow\)x=0 hoặc x^2=13 hay x=\(\sqrt{13}\)
a) \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2000=0\\5x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}\)
b) \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{cases}}\)
do không viết được dấu ngoặc vuông nên mình thay bằng dấu ngoặc nhọn nha!
Tìm x, biết:
a/5x(x-2000)-x+2000=0
b/x3-13x=0
a, 5x(x-2000)-x+2000=0
<=>5x(x-2000)-(x-2000)=0
<=>(5x-1)(x-2000)=0
<=>5x-1=0 hoặc x-2000=0
<=>x=1/5 hoặc x=2000
b, x3-13x=0
<=>x(x2-13)=0
<=>x=0 hoặc x2-13=0
<=>x=0 hoặc x=\(\sqrt{13}\) hoặc x=\(-\sqrt{13}\)
a,5x(x-2000)-x+2000=0
=>5x(x-2000)-(x-2000)=0
=>(5x-1)(x-2000)=0
=>x-2000=0 hoặc 5x-1=0
=>x=2000 hoặc x=1/5
vậy x=1/5;2000
b,x3-13x=0
=>(x2-13)x=0
=>x2-13=0 hoặc x=0
=>x=0 hoặc x=\(\sqrt{13}\)
vậy x=0;\(\sqrt{13}\)
Tìm x biết:
\(a,3x^3-3x=0\)
\(b,x\left(x-2\right)+x-2=0\)
\(c,5x\left(x-2000\right)-x+2000=0\)
a, 3x 3 - 3x = 0
=> 3x ( x 2 - 1 ) = 0
=> \(\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}\Rightarrow[}\begin{cases}x=0\\x=1\\x=-1\end{cases}}\)
b, x ( x - 2 ) + ( x - 2 ) = 0
=> ( x - 2 ) ( x + 1 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
c, 5x ( x - 2000 ) - x + 2000 = 0
=> ( x - 2000 ) ( 5x - 1 ) = 0
=> \(\orbr{\begin{cases}x-2000=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}}\)
Tìm x , biết :
a) 5x . ( x - 2000 ) - x+2000 = 0
b) x3 -13x = 0
c) x + 5x2 = 0
d) x +1 = ( x+ 1)2
e) x3 + x=0
a ) \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x=2000\) và \(x=\dfrac{1}{5}\)
b ) \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)
Vậy \(x=0\) và \(x=\sqrt{13}\)
c ) \(x+5x^2=0\)
\(\Leftrightarrow x\left(1+5x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\1+5x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-\dfrac{1}{5}\)
d ) \(\left(x+1\right)=\left(x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)\left[1-\left(x+1\right)\right]=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-1\)
e ) \(x^3+x=0\)
\(\Leftrightarrow x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\\left(loại\right)\end{matrix}\right.\)
Vậy \(x=0\)
a, \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-2000=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2000\end{matrix}\right.\)
b,\(x^3-13x=0\)
\(\Leftrightarrow x\left(x ^2-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)
c,\(x+5x^2=0\)
\(\Leftrightarrow x\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\)
d,\(x+1=\left(x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
e,\(x^3+x=0\)
\(\Leftrightarrow x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
CHÚC BẠN HỌC TỐT........
Ở câu e, cho mình sửa lại:
\(x^2+1=0\) (vô lý, do \(x^2+1\ge0\))
Vậy x=0