\(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
\(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
\(729x^4+8\sqrt{1-x^2}=36\)
GPT:\(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x-1}=1\)
1\(\sqrt{5+2\sqrt{8}}-\sqrt{5-2\sqrt{8}}\) 2)\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\) 3) \(\dfrac{\sqrt{x^2-5x+6}}{\sqrt{x-2}}\) 4)\(\dfrac{\sqrt{\left(x-4\right)^2}}{x^2-5x+4}\) 5) \(\dfrac{3x+1}{\sqrt{9x^2+6x+1}}\)
giải hương trình \(\sqrt{3x^2+5x+8}trừ\sqrt{3x^2+5x+1}=1\)
Đặt \(t=\sqrt{3x^2+5x+1}\left(t\ge0\right)\)
pt đã cho trở thành: \(\sqrt{t^2+7}-t=1\Leftrightarrow\sqrt{t^2+7}=t+1\)
- bình phương 2 vế, giải ra t, trả lại nghiệm x, tìm x
\(\sqrt {3{x^2} + 5x + 8} - \sqrt {3{x^2} + 5x + 1} = 1\\ \text{Điều kiện}: \forall x \in \mathbb{R}\\ \text{Đặt}:\sqrt {3{x^2} + 5x + 8} =a; \sqrt {3{x^2} + 5x + 1} = b\\ \Rightarrow \left\{ \begin{array}{l} a - b = 1\\ {a^2} - {b^2} = 7 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a = b + 1\\ {\left( {b + 1} \right)^2} - {b^2} = 7 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a = b + 1\\ 2b = 6 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} a = 4\\ b = 3 \end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l} \sqrt {3{x^2} + 5x + 8} = 4\\ \sqrt {3{x^2} + 5x + 1} = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 3{x^2} + 5x + 8 = 16\\ 3{x^2} + 5x + 1 = 9 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 3{x^2} + 5x - 8 = 0\\ 3{x^2} + 5x - 8 = 0 \end{array} \right.\\ \Leftrightarrow \left( {x - 1} \right)\left( {3x + 8} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\\ x = - \dfrac{8}{3} \end{array} \right. \)
\(\text{Cách khác:}\\ \text{Đặt}:t = \sqrt {3{x^2} + 5x + 8} \left( {t \ge 0} \right) \text{thì} t^2=3x^2+5x+8\\ PT:t-\sqrt{t^2-7}=1 \Leftrightarrow \sqrt{t^2-7} = t- 1 \)
\( \Leftrightarrow \left\{ \begin{array}{l} t - 1 \ge 0\\ {t^2} - 7 = {\left( {t - 1} \right)^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} t \ge 1\\ 2t = 8 \end{array} \right. \Leftrightarrow t = 4\)
\(\text{Do đó:}\) \(\sqrt{3x^2+5x+8}=4\Leftrightarrow3x^2+5x-8=0\Leftrightarrow\left(x-1\right)\left(3x+8\right)=0\Leftrightarrow\)\(x=1 \text{hoặc} x =- \dfrac{8}{3}\)
Giải các phương trình sau
a/ \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}=2\)
b/ \(\sqrt[3]{5x+7}-\sqrt[3]{5x-13}=1\)
c/ \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
a) Đặt \(a=\sqrt[3]{1+\sqrt{x}};b=\sqrt[3]{1-\sqrt{x}}\)
\(\Rightarrow a^3+b^3=2\) kết hợp với đề bài
\(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=2\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a^2-ab+b^2\right)=2\\a+b=2\end{matrix}\right.\)
................
Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
a) \(\sqrt[3]{x^2+5x^1}-1=\sqrt{\dfrac{5x^2-2}{6}}\)
b) \(\dfrac{1}{\sqrt{2x+1}-\sqrt{3x}}=\dfrac{\sqrt{3x+2}}{1-x}\)
Câu a bạn coi lại đề
b. ĐKXĐ: \(x\ge0;x\ne1\)
\(\Leftrightarrow\dfrac{\sqrt{2x+1}+\sqrt{3x}}{1-x}=\dfrac{\sqrt{3x+2}}{1-x}\)
\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3x}=\sqrt{3x+2}\)
\(\Leftrightarrow5x+1+2\sqrt{3x\left(2x+1\right)}=3x+2\)
\(\Leftrightarrow2\sqrt{6x^2+3x}=1-2x\) (\(x\le\dfrac{1}{2}\) )
\(\Leftrightarrow4\left(6x^2+3x\right)=4x^2-4x+1\)
\(\Leftrightarrow20x^2+16x-1=0\)
\(\Rightarrow x=\dfrac{-4+\sqrt{21}}{10}\)
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
giải phương trình
a, \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
b, \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
c, \(2x^2+4x=\sqrt{\dfrac{x+3}{2}}\)
d, \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
e, \(729x^4+8\sqrt{1-x^2}=36\)
f, \(7x^2-10x+14=5\sqrt{x^4+4}\)
g, \(x^3+3x^2-3\sqrt[3]{3x+5}=1-3x\)
h, \(\sqrt{4-3\sqrt{10-3x}}=x-2\)
i, \(\sqrt{x-1}+\sqrt{x^2-1}=\sqrt{x^2-5x+4}\)
a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)
\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)
\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)
pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)
\(\Leftrightarrow t^2-2t-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)
suy ra tìm đc x
câu b đặt t =\(3x^2+5x+8\)
ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)
\(\Rightarrow t=16\)
\(\Leftrightarrow3x^2+5x+8=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)