Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Giang Do
Xem chi tiết
phạm minh tâm
9 tháng 12 2017 lúc 20:53

ap dung BDT bunhiacopxki

Giang Do
9 tháng 12 2017 lúc 21:25

Trong chuog trinh lop 9 chua hoc bdt do nen k dc ap dug

phạm minh tâm
10 tháng 12 2017 lúc 21:52

với a,b >=o thì bình phương hai vế được một bdt luôn đúng

Trần Thanh Hải
Xem chi tiết
Incursion_03
5 tháng 1 2019 lúc 22:22

Áp dụng bđt Cô-si ta được

\(\sqrt{\frac{a^2}{b}}+\sqrt{b}\ge2\sqrt{\sqrt{\frac{a^2}{b}}.\sqrt{b}}=2\sqrt{a}\)

Tương tự \(\sqrt{\frac{b^2}{a}}+\sqrt{a}\ge2\sqrt{b}\)

Cộng 2 vế của bđt trên lại ta được

\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\sqrt{a}+2\sqrt{b}\)

\(\RightarrowĐpcm\)

Dấu "=" <=> a = b

원회으Won Hoe Eu
Xem chi tiết
sdsdsd gggsss
13 tháng 10 2019 lúc 20:51

theo BĐT cô - si ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\left(a\ge0,b\ge0\right)\)

\(\Leftrightarrow\)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\)\(a+b+a+b\ge2\sqrt{ab}+a+b\)

\(\Leftrightarrow\)\(2a+2b\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(\frac{1}{4}\cdot2\cdot\left(a+b\right)\ge\frac{1}{4}\cdot\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}\)

\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) \(\left(đpcm\right)\)

Phạm Minh Quang
12 tháng 10 2019 lúc 18:07

Biến đổi tương đương đi

tthnew
12 tháng 10 2019 lúc 19:21

BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\Leftrightarrow\frac{a-2\sqrt{ab}+b}{4}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)(đúng)

Đẳng thức xảy ra khi a = b

P/s: em ko chắc..

Hoàng Gia Anh Vũ
Xem chi tiết
Hoàng Lê Bảo Ngọc
20 tháng 10 2016 lúc 11:39

Thắng Nguyễn Phần cuối cùng viết rõ ra một chút :

\(2\sqrt{2}\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\ge\frac{y^2+z^2-x^2}{x}+\frac{y^2+x^2-z^2}{z}+\frac{x^2+z^2-y^2}{y}\)

\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{y^2}{z}+\frac{x^2}{z}+\frac{x^2}{y}+\frac{z^2}{y}-\sqrt{2015}\ge\frac{\left[2\left(x+y+z\right)\right]^2}{2\left(x+y+z\right)}-\sqrt{2015}=\sqrt{2015}\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\sqrt{2015}}{2\sqrt{2}}=\frac{1}{2}\sqrt{\frac{2015}{2}}\)

Thắng Nguyễn
20 tháng 10 2016 lúc 11:15

Đặt \(\sqrt{a^2+b^2=z};\sqrt{a^2+c^2}=y;\sqrt{b^2+c^2}=x\left(x;y;z>0\right)\)

\(\Rightarrow a^2=\frac{y^2+z^2-x^2}{2};b=\frac{x^2+z^2-y^2}{2};c=\frac{x^2+y^2-z^2}{2}\)

Theo đề \(x+y+z=\sqrt{2015}\)

Ta có:\(b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}\cdot x\)\(\Rightarrow\frac{a^2}{b+c}\ge\frac{y^2+z^2-x^2}{2\sqrt{2}\cdot x}\)

Tương tự cho 2 cái còn lại rồi, cộng lại:

\(VT\cdot2\sqrt{2}\ge\sqrt{2015}\Rightarrow VT\ge\frac{1}{2}\sqrt{\frac{2015}{2}}\)

Trần Văn Thành
20 tháng 10 2016 lúc 12:26

khong biet

Kim Taehyung
Xem chi tiết
Fa Châu De
2 tháng 9 2019 lúc 18:17

1. Ta có:

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( Nếu a, b ≥ 0)

=> \(a-2\sqrt{ab}+b\ge0\)

=> \(\left(a-2\sqrt{ab}+b\right)+2\sqrt{ab}\ge0+2\sqrt{ab}\)

=> \(a+b\ge2\sqrt{ab}\) => \(\frac{\left(a+b\right)}{2}\ge\frac{2\sqrt{ab}}{2}\)

=> \(\frac{\left(a+b\right)}{2}\ge\sqrt{ab}\);

(Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\) => a = b)

Trần Thanh Phương
2 tháng 9 2019 lúc 18:25

1. BĐT \(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

2. BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)

\(\Leftrightarrow2\left(a+b\right)\ge a+2\sqrt{ab}+b\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

3. Ta có: \(M=\frac{2}{\sqrt{1\cdot2005}}+\frac{2}{\sqrt{2\cdot2004}}+...+\frac{2}{\sqrt{1003\cdot1003}}\)

Áp dụng BĐT Cô-si:

\(\sqrt{1\cdot2005}\le\frac{1+2005}{2}=1003\)

Do dấu "=" không xảy ra nên \(\sqrt{1\cdot2005}< 1003\)

Khi đó: \(\frac{2}{\sqrt{1\cdot2005}}>\frac{2}{1003}\)

Chứng minh tương tự với các phân thức còn lại rồi cộng vế ta được :

\(M>\frac{2006}{1003}>\frac{2005}{1003}\) ( đpcm )

tthnew
4 tháng 9 2019 lúc 19:11

Em có cách khác ở bài 2 nè:) Nhưng thôi làm 2 bài luôn bài 3 ý tưởng y hệt hà..

Bài 1: BĐT \(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\left(true\right)\)

Đẳng thức xảy ra khi a = b

Bài 2: BĐT trên là thuần nhất (hay đồng bậc gì ấy) nên ta chuẩn hóa a + b =2.

Cần chứng minh: \(1\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)

Thật vậy theo Cô si: \(RHS\left(VP\right)=\frac{\sqrt{1.a}+\sqrt{1.b}}{2}\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2}=\frac{a+b+2}{4}=1=LHS\left(VT\right)\)

Ta có đpcm. True?

Minh Triều
Xem chi tiết
Trần Thị Loan
6 tháng 8 2015 lúc 20:53

 

\( x^3=a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}+a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}+3\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}.\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}.x\)

=> \(x^3=2a+3\sqrt[3]{\left(a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}\right)\left(a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}\right)}.x\)

\(x^3=2a+3\sqrt[3]{a^2-\left(\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}\right)^2}.x\)

\(x^3=2a+3\sqrt[3]{\left(\frac{1-2a}{3}\right)^3}.x\)=> \(x^3=2a+\left(1-2a\right).x\)

=> x3   = 2a + x - 2ax => x- x + 2ax - 2a = 0 

=> x(x2  - 1) + 2a.(x -1) = 0 

=> (x -1). (x2 + x + 2a) = 0 

=> x - 1 = 0 hoặc x+ x  + 2a = 0 

Mà x+ x + 2a = x+ 2.x . (1/2) + (1/4) + 2a -(1/4) = (x +1/2)+ 2. (a - 1/8) > = 0 với mọi a > = 1/8

=>  x+ x  + 2a = 0  Vô nghiệm

vậy x = 1 => x thuộc N

Nguyễn Phương Oanh
Xem chi tiết
tthnew
10 tháng 7 2019 lúc 10:17

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

CCDT
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2021 lúc 23:24

\(VT\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)

Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{2019}\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\) \(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2-x^2}{x}+\dfrac{z^2+x^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}\)

\(\Rightarrow2\sqrt{2}VT\ge\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{\left(y+z\right)^2}{2x}+\dfrac{\left(z+x\right)^2}{2y}+\dfrac{\left(x+y\right)^2}{2z}-\left(x+y+z\right)\)

\(2\sqrt{2}VT\ge\dfrac{4\left(x+y+z\right)^2}{2x+2y+2z}-\left(x+y+z\right)=x+y+z=\sqrt{2019}\)

\(\Rightarrow VT\ge\dfrac{\sqrt{2019}}{2\sqrt{2}}=\sqrt{\dfrac{2019}{8}}\) (đpcm)

TRƯƠNG NGỌC NHÃ HÂN
Xem chi tiết