chứng minh rằng
\(x^3+y^3-z^3+3xyz⋮x+y-z\) tìm thương
Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)
\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)
\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)
\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)
=> đpcm
1)chứng minh rằng nếu vs mọi số hữu tỉ x,y,z thỏa mãn
(x-y+z)^2=x^2-y^2+z^2 thì (x-y+z)^n=x^n-y^n+z^n
2)chứng minh x^3+y^3-z^3+3xyz chia hết cho x+y-z
tìm thương của phép chia
Chứng minh rằng :
a. ( x + y + z )^3 -x^3 - y^3 -z^3 = 3(x+y)(y+z)(x+z)
b. Nếu x + y + z = 0 thì x^3 + y^3 + z^3 = 3xyz
\(a,\left(x+y+z\right)^3-x^3-y^3-z^3\\ =\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\\ =\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =x^3+y^3+z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\\ =\left(x+y\right)\left(3xy+3xz+3yz+3z^2\right)\\ =3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\\ =3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(b,x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz+2xy-3xy\right)\\ =0\left(x^2+y^2+z^2-xz-yz-xy\right)=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)
1) Cho x+y+z = 0. Chứng minh rằng x^3+y^3+z^3 = 3xyz.
ta có x+y+z=0
=> x+y=-z
=> (x+y)^3=(-z)^3
=> x^3+y^3+3xy(x+y)=-z^3
x^3+y^3+z^3+3xy(x+y)=0
x^3+y^3+z^3-3xyz=0
=> x^3+y^3+z^3=3xyz
kagamine rin len đúng rồi đó
cho x,y,z là 3 số thược dương thỏa mãn: (x+y)(y+z)(z+x)=8xyz. Chứng minh rằng: x^3+y^3+z^3=3xyz
Áp dụng bđt AM-GM:
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{xz}\)
Nhân theo vế:\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)
\("="\) khi x=y=z
Khi đó hiển nhiên \(x^3+y^3+z^3=3xyz\)
X+y+z=0. Chứng minh rằng: x^3+y^3+^3=3xyz
cho x + y + z = 0. Chứng minh rằng\(x^3+y^3+z^3=3xyz\)
Ta có : x+y+z = 0
\(\Rightarrow x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=\left(-z\right)^3\)
\(\Leftrightarrow x^3+y^3+z^3=-3x^2y-3xy^2\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)
\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(-z\right)\)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\)
x + y + z = 0
x + y = -z
( x + y )3 = ( -z )3
x3 + 3x2y +3xy2 + y3 = -z3
x3 + y3 + z3 = 3x2y - 3xy2
x3 + y3 + z3 = - 3xy ( x + y )
x3 + y3 + z3 = -3xy. ( -z )
x3 + y3 + z3 = 3xyz ( đpcm )
chứng minh rằng
x + y+ z= 0
thì x^3+y^3+z^3= 3xyz
http://olm.vn/hoi-dap/question/709831.html
cho x+y+z = 0.chứng minh rằng x3+y3+z3=3xyz