tìm số nguyên n sao cho:
a, 2n+1 chia hết cho n-2
b, 2n-5 chia hết cho n+1
Bài 4: Tìm số tự nhiên n sao cho:
a) 4n - 5 chia hết cho 2n - 1
b) n2 + 3n + 1 chia hết cho n +1
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
12. Tìm số tự nhiên n sao cho:
a) 5 chia hết cho n + 3.
b) n + 8 chia hết cho n + 3.
c) 4n – 5 chia hết cho 2n – 1.
d) 12 – n chia hết cho 8 – n.
\(a,\Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ b,\Rightarrow n+3+5⋮n+3\\ \Rightarrow5⋮n+3\\ \Rightarrow n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n\in\left\{-8;-4;-2;2\right\}\\ c,\Rightarrow2\left(2n-1\right)-3⋮2n-1\\ \Rightarrow3⋮2n-1\\ \Rightarrow2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Rightarrow n\in\left\{-1;0;1;2\right\}\\ d,\Rightarrow8-n+4⋮8-n\\ \Rightarrow4⋮8-n\\ \Rightarrow8-n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow n\in\left\{12;10;9;7;6;4\right\}\)
tìm số nguyên n sao cho:a,2n+3chia hết n+1 b,n2-5 chia hết n+1
tìm số tự nhiên n sao cho:
a) n + 3 chia hết cho n - 1
b) 4n + 3 chia hết cho 2n + 1
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
Ta có: 2n+1 chia hết cho 2n+1
nên 2.(2n+1) chia hết cho 2n+1
suy ra 4n+1 chia hết cho 2n+1
Ta có hiệu sau:
[(4n+3)-(4n+1)] chia hết cho 2n+1
(4n+3-4n-1) chia hết cho 2n+1
2 chia hết cho 2n+1
suy ra 2n+1 thuộc Ư(2)
Ư(2)={1;2}
suy ra 2n+1∈{1;2}
Ta có bảng sau:
2n+1 1 2
2n 0 1
n 0 1/2
Vậy n=0
a) để n+3⋮n-1
thì n-1+4⋮n-1
⇒4⋮n-1
⇒n-1∈Ư(4)={1;2;4}
\(\Rightarrow\left[{}\begin{matrix}n-1=1\\n-1=2\\n-1=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\\n=3\\n=5\end{matrix}\right.\)
vậy n∈{2;3;5}
b)để 4n+3⋮2n+1
thì 2.2n+1+2⋮2n+1
⇒2⋮2n+1
⇒2n+1∈Ư(2)={1;2}
\(\Rightarrow\left[{}\begin{matrix}2n+1=1\\2n+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n=0\\2n=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=\dfrac{1}{2}\end{matrix}\right.\)
vì n là số tự nhiên
⇒n=0
vậy n=0
(tick cho mk nha)
Tìm số nguyên n sao cho a,2n-7 chia hết cho n+3 b, n+5 chia hết cho 2n-1 c, n-8 chia hết cho n+1
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
b, n+5 chia hết cho 2n-1 => 2(n+5) chia hết cho 2n-1 => 2n+10 chia hết cho 2n-1
2n-1 chia hết cho 2n-1
=>2n+10-(2n-1) chia hết cho 2n-1
=>2n+10-2n+1 chia hết cho 2n-1
=>11 chia hết cho 2n-1
=>2n-1 E Ư(11)={1;-1;11;-11}
=>n E {1;0;6;-5}
a) 2n-7 chia hết cho n+3
=> 2n+6-13 chia hết cho n+3
=> 2(n+3)-13 chia hết cho n+3
=> 2(n+3) chia hết cho n+3 ; 13 chia hết cho n+3
=> n+3 thuộc Ư(13)={-1,-13,1,13}
Ta có bảng :
n+3 | -1 | -13 | 1 | 13 |
n | -4 | -16 | -2 | 10 |
vậy n={-18,-16,-4,10}
b) Như ST làm
c) n-8 chia hết cho n+1
=> n+1-9 chia hết cho n+1
=> n+1 chia hết cho n+1 ; 9 chia hết cho n+1
=> n+1 thuộc Ư(9)={-1,-3,-9,1,3,9}
=> n={-2,-4,-10,0,2,8}
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
Tìm số tự nhiên n biết:
a) 2n+7 chia hết cho n+2
b) 4n-5 chia hết cho 2n -1
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
Tìm STN n sao cho:
a) (4n - 7) chia hết cho (n - 1)
b) (5n - 8) chia hết cho (4 - n)
c) (10 - 2n) chia hết cho (n - 2)
d) (n^2 + 3n + 6) chia hết cho (n + 3)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
tìm số nguyên n sao cho n +5 chia hết cho n-2.
tìm số nguyên n sao cho 2n +1 chia hết cho n -5
n + 5 chia hết cho n - 2
n - 2 + 7 chia hết cho n - 2
Mà n - 2 chia hết cho n - 2
=> 7 chia hết cho n - 2
n - 2 thuộc Ư(7) = {-7 ; -1 ; 1 ; 7}
n - 2 = -7 => n = -5
n - 2 =-1 => N = 1
n - 2 = 1 => n = 3
n - 2 = 7 => n = 9
Vậy n thuộc {-5 ; 1 ; 3 ; 9}
2n + 1 chia hết cho n - 5
2n - 10 + 11 chia hết cho n - 5
Mà 2n + 10 chia hết cho n- 5
=> 11 chia hết cho n - 5
n - 5 thuộc Ư(11) = {-11 ; -1 ; 1 ; 11}
n - 5 = -11 => n =-6
n - 5 = -1 => n = 4
n - 5 = 1 => n = 6
n - 5 =11 => n = 16
Vậy n thuộc {-6 ; 4 ; 6 ; 16}
p/s : kham khảo
Ta có:
n+5 = n - 2 + 7
mà n - 2 chia hết cho n - 2
nên suy ra 7 phải chia hết cho n - 2
suy ra n-2 thuộc ước của 7
xét các trường hợp