Cho tam giác ABC. Gọi M là trung điểm của BC, I là trung điểm của AM. Tia BI cắt AC ở D. Qua M kẻ đường thẳng song song với BD cắt AC ở E. Chứng minh rằng:
a) AD=DE=EC
b) ID=1/4BD
cho tam giác ABC. Gọi M là trung điểm của BC. I là trung điểm của AM. tia BI cắt ac ở D. qua M kẻ đường thẳng song song với BD cắt AC ở E
CMR a) AD=DE=EC b)ID=1/4BD
a) Xét tam giác BDC có :
M là trung điểm BC và ME // BD
=> DE= EC (1)
Xét tam giác AME, có :
I là trung điểm AM và ID//ME (BD//ME)
=> AD= DE (2)
Từ (1) và (2) => AD= DE = EC (đpcm)
b ) Vì ME là đường trung bình tam giác BDC (tự chứng minh)
=> ME= 1/2BD (3)
Vì ID là đường trung bình tam giác AME ( tự chứng minh)
=> ID= 1/2 ME (4)
Từ (3) và (4) => ID = 1/4 BD (đpcm)
Cho tam giác ABC. Gọi M là trung điêm của BC, I là trung điểm của AM. Tia BI cắt AC tại D. Qua M kẻ đường thẳng song song vs BD cắt AC ở E. CmR: a) AD=DE=EC
b) ID=1/4BD
Cho tam giác ABC có M là trung điểm BC
1)Gọi I là trung điểm AM,tia BI cắt AC tại D.Qua M kẻ đường thẳng song song với BD cắt AC tại E.Cmr
a)AD=DE=EC
b)DI=1/4BD
2)D là trung điểm trên cạnh AC sao cho AD=1/3AC,tia BD cắt AM tại I.Cmr
a)I là trung điểm AM
b)ID=1/3IB
1
a
Xét tam giác BDC có M là trung điểm của BC,ME//BD nên E là trung điểm của DC hay DE=CE.
Xét tam giác AME có I là trung điểm của AM,ID//ME nên D là trung điểm của AE hay AD=DE.
Suy ra AD=DE=CE.
b
Ta có ID là đường trung bình nên \(ID=\frac{1}{2}ME\)
ME là đường trung bình nên \(ME=\frac{1}{2}BD\Rightarrow DI=\frac{1}{4}BD\)
2
a
Kẻ ME//AC cắt BD tại E.
Ta có:ME//AC,M là trung điểm của BC nên E là trung điểm của BD.
Khi đó ME là đường trung bình nên \(ME=\frac{1}{2}DC=AD\)
Xét \(\Delta\)ADI và \(\Delta\)MIE có:ME=AD;\(\widehat{IAD}=\widehat{IME}\);\(\widehat{IDA}=\widehat{IEM}\)
\(\Rightarrow\Delta ADI=\Delta MIE\left(g.c.g\right)\Rightarrow ID=IE\)
b
Kẻ MF//BD cắt AC tại F
Ta có:
M là trung điểm của BC,MF//BD nên F là trung điểm của DC.Khi đó D là trung điểm của AF,I là trung điểm của AM nên:
\(DI=\frac{1}{2}MF\)
Mặt khác:EM//DC;ED//MF nên theo tính chất cặp đoạn chắn ta được MF=ED.
\(\Rightarrow DI=\frac{1}{2}BE\Rightarrow ID=\frac{1}{2}IB\)
Cho tam giác ABC, M là trung điểm của BC, I là trung điểm của AM. Tia BI cắt AC ở D. Qua M kẻ đường thẳng // với BD cắt AC ở E. Cm
a, AD=DE=EC
b, ID=1/4BD
Hình vẽ:
Giải:
a, Ta có: ME // BD => ME // ID
Xét \(\Delta AME\) có: IA = IM (gt) và ID // ME (cmt)
=> DA = DE (1)
Cm tương tự ở tam giác BCD có: ED = EC (2)
Từ (1) và (2) => DA = DE = EC (đpcm)
b, Ta có: IA = IM (gt) và DA = DE (đã cm)
=> ID là đương trung bình của \(\Delta AME\)
=> \(ID=\dfrac{1}{2}ME\) (3)
mặt khác: MB = MC (gt); ED = EC (đã cm)
=> ME là đương trung bình của \(\Delta BCD\)
=> \(ME=\dfrac{1}{2}BD\) (4)
Thay (4) vào (3) ta được: \(ID=\dfrac{1}{2}\cdot\dfrac{1}{2}BD=\dfrac{1}{4}BD\left(đpcm\right)\)
cho tam giác ABC. Gọi M là trung điểm của BC, I là trung điểm AM. Tia BI cắt AC ở D. Qua M kẻ đoạn thẳng song song BC, cắt AC ở E
Chứng minh: AD=DE
Sửa đề: Qua M kẻ đoạn thẳng song song với BD, cắt AC tại E
Ta có: ME//BD(gt)
⇔ID//ME
Xét ΔAME có
I là trung điểm của AM(gt)
ID//AE(cmt)
Do đó: D là trung điểm của AE(Định lí 1 về đường trung bình của tam giác)
hay AD=DE(đpcm)
Bài 1: cho tam giác ABC. Gọi m là trung điểm của BC, I là trung điểm của AM. Tia BI cắt AC ở D. Qua M là đường thẳng song song với BD cắt AC ở E. CM:
a) AD=DE=CE
b) ID=\(\frac{1}{4}\) BD
a) Cm AD=DE=CE
Xét ΔABC , ta có:
\(\begin{cases} I là trung điểm AM(gt) \\ ID//ME( BD//ME,I \in BD) \end{cases} \)
=> AD=DE (1)
Xét ΔBDC, ta có:
\(\begin{cases} M là trung điểm BC( gt)\\ ME//BD(gt) \end{cases}\)
=> DE=CE (2)
Từ (1) và (2) suy ra: AD = DE = CE
b) Cm \(ID=\dfrac{1}{4}BD\)
Xét ΔAEM, ta có:
\(\begin{cases} I là trung điểm AM(gt)\\ D là trung điểm AE (AD=DE) \end{cases}\)
=> ID là đường trung bình ΔAEM.
=> \(ID\parallel ME, ID=\dfrac{1}{2}ME\)=> 2ID=ME
Xét ΔBDC, ta có:
\(\begin{cases} M là trung điểm BC(gt)\\ E là trung điểm CD(DE=CE) \end{cases} \)
=> ME là đường trung bình ΔBDC
=>\(ME\parallel BD, ME=\dfrac{1}{2} BD\)
Mà : ME=2ID(cmt)
Suy ra: \(2ID=\dfrac{1}{2}BD\)
\(ID=\dfrac {1}{2}BD:2\)
\(ID=\dfrac{1}{4}BD\)(đpcm)
Cho tam giác ABC. Gọi M là trung điểm BC, I là trung điểm của AM. Tia BI cắt AC tại D. Qua M kẻ đg thẳng song song với BD cắt AC tại E
CMR: a) AD=DE=EC
b) ID= 1/4 BD
Cho tam giác ABC vuông tại A. Gọi D là điểm thuộc cạnh BC sao cho BD = BA và H là trung điểm của AD. Tia BH cắt AC tại E. Tia DE cắt tia BA tại M. Qua điểm E kẻ đường thẳng song song với BD cắt AC tại F Gọi K là giao điểm của DE và HF. Chứng minh rằng: KE=2KD
7. Cho tam giác ABC. Đường thẳng qua A song song với BC cắt đường thằng qua C song song với AB ở D. Gọi M là giao điểm của BD và AC. a) Chứng minh ABC CDA b) Chứng minh M là trung điểm của AC. c) Đường thẳng d qua M cắt các đoạn thẳng AD, BC lần lượt ở I, K. Chứng minh M là trung điểm của IK.