A = \sqrt{6+2\sqrt{2}*\sqrt{4+2\sqrt{3}}}
rút gọn
Rút gọn biểu thức.
a) \(\sqrt{\dfrac{7-4\sqrt{3}}{\sqrt{3}-2}}\)
b) \(\sqrt{\dfrac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}}\)
a: Sửa đề: \(\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-2}=\dfrac{2-\sqrt{3}}{\sqrt{3}-2}\)
=-1
b: Sửa đề: \(\dfrac{\sqrt{5-2\sqrt{6}}}{\sqrt{3}-\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)
=1
Rút gọn
\(\sqrt[3]{4-2\sqrt{6}}+\sqrt[3]{4+2\sqrt{6}}\)
Đặt \(A=\sqrt[3]{4-2\sqrt{6}}+\sqrt[3]{4+2\sqrt{6}}\)
\(\Rightarrow A^3=4-2\sqrt{6}+4+2\sqrt{6}+3\left(\sqrt[3]{4+2\sqrt{6}}+\sqrt[3]{4-2\sqrt{6}}\right)\sqrt[3]{4+2\sqrt{6}}\sqrt[3]{4-2\sqrt{6}}=8-6A\)
\(\Rightarrow A^3+6A-8=0\).
Giải pt bậc 3 này ta được \(A\approx1,107\).
P/s: Bài này có vấn đề vì pt bậc 3 này muốn giải dc phải dùng công thức nghiệm?
Rút gọn:
\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
Lời giải:
\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{(\sqrt{3}+1)^2}}}\)
\(=\sqrt{6+2\sqrt{2}.\sqrt{3-(\sqrt{3}+1)}}\)
\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{(\sqrt{3}-1)^2}}=\sqrt{6+2(\sqrt{3}-1)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{(\sqrt{3}+1)^2}=\sqrt{3}+1\)
Thực hiện phép tính (rút gọn biểu thức)
a) \(\sqrt{9+4\sqrt{5}}\) - \(\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{12-6\sqrt{3}}\) + \(\sqrt{12+6\sqrt{3}}\)
c) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
Lời giải:
a.
\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)
$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$
b.
$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$
$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$
$=|\sqrt{3}-3|+|\sqrt{3}+3|$
$=(3-\sqrt{3})+(\sqrt{3}+3)=6$
c.
$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$
$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$
$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$
rút gọn các biểu thức sau
\(\dfrac{6+4\sqrt{2}}{\sqrt{2}+\sqrt{6+4\sqrt{2}}}\)+\(\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
\(\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}\)+\(\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)
a: \(=\dfrac{6+4\sqrt{2}}{\sqrt{2}+2+\sqrt{2}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-2+\sqrt{2}}\)
\(=\dfrac{6+4\sqrt{2}}{2+2\sqrt{2}}+\dfrac{6-4\sqrt{2}}{2\sqrt{2}-2}\)
\(=\dfrac{3+2\sqrt{2}}{\sqrt{2}+1}+\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}\)
=căn 2+1+căn 2-1=2căn 2
b: \(=\dfrac{\sqrt{3}+\sqrt{3+\sqrt{3}}+\sqrt{3}-\sqrt{3+\sqrt{3}}}{1-\sqrt{3}-1}=\dfrac{-2\sqrt{3}}{\sqrt{3}}=-2\)
Rút gọn biểu thức:
a) \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
b) \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
c) \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
d) \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)
\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)
\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)
\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)
\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)
\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)
\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)
a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)
\(=\sqrt{5}\)
d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)
\(=\sqrt{11+6\sqrt{2}}\)
\(=3+\sqrt{2}\)
Rút gọn biểu thức
1) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
2) (\(\sqrt{3}\) - 2)\(\sqrt{7+4\sqrt{3}}\)
1: =3+căn 2-3+căn 2
=2căn 2
2: =(căn 3-2)(căn 3+2)
=3-4=-1
Rút gọn:
\(A=\sqrt{3+2\sqrt{2}}-\sqrt{6+2\sqrt{2}+2\sqrt{3}+2\sqrt{6}}\)
A = \(\sqrt{3+2\sqrt{2}}-\sqrt{6+2\sqrt{2}+2\sqrt{3}+2\sqrt{6}}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{3+2\sqrt{2}+2\sqrt{3}+2\sqrt{6}+3}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2+2\sqrt{3}\left(\sqrt{2}+1\right)+3}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}+1+\sqrt{3}\right)^2}\)
= \(\left|\sqrt{2}+1\right|-\left|\sqrt{2}+\sqrt{3}+1\right|\)
= \(\sqrt{2}+1-\sqrt{2}-\sqrt{3}-1\)
= \(-\sqrt{3}\)
5.Rút gọn:
B= \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}\)
6.Rút gọn:
A= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)