Giải phương trình \(2x^2+5x-1=7\sqrt{x^3-1}\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Giải phương trình:
1. \(5x^2+2x+10=7\sqrt{x^4+4}\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\sqrt{x^2+2x}=\sqrt{3x^2+4x+1}-\sqrt{3x^2+4x+1}\)
1, Giải phương trình :\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
2, Giải bất phương trình :\(2x^3-5x^2+5x-3< 0\)
x-1 + x-3 =1 <=> 2x -4=1 tu giai not
Giải phương trình:
\(2x^2+5x-1=7\sqrt{x^3-1}\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
1 ĐKXD \(x\ge1\)
.\(2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+x+1}=b\left(a,b\ge0\right)\)
=> \(2b^2+3a^2=2x^2+5x-1\)
=> \(2b^2+3a^2-7ab=0\)
<=> \(\orbr{\begin{cases}a=2b\\a=\frac{1}{3}b\end{cases}}\)
+ \(a=2b\)
=> \(2\sqrt{x^2+x+1}=\sqrt{x-1}\)
=> \(4x^2+3x+5=0\)vô nghiệm
+ \(a=\frac{1}{3}b\)
=> \(\sqrt{x^2+x+1}=3\sqrt{x-1}\)
=> \(x^2-8x+10=0\)
<=> \(\orbr{\begin{cases}x=4+\sqrt{6}\left(tmĐK\right)\\x=4-\sqrt{6}\left(kotmĐK\right)\end{cases}}\)
Vậy \(x=4+\sqrt{6}\)
ĐKXĐ:\(2x^2-1\ge0;x^2-3x-2\ge0;2x^2+2x+3\ge0;x^2-x+2\ge0\)
\(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2+2x+3}+\sqrt{x^2-x+2}\)
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
\(\Leftrightarrow\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\left(2x+4\right)\left(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}\right)=0\)(1)
Vì \(\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}>0\)
nên pt(1) <=> \(2x+4=0\Leftrightarrow x=-2\)(tmđk)
Vậy x=-2
Em kiểm tra lại đề bài câu trên nhé
2,
PT
<=> \(\left(\sqrt{2x^2+2x+3}-\sqrt{2x^2-1}\right)+\left(\sqrt{x^2-x+2}-\sqrt{x^2-3x-2}\right)=0\)
<=> \(\frac{2x+4}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{2x+4}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\)
<=> \(\orbr{\begin{cases}x=-2\left(tmĐK\right)\\\frac{1}{\sqrt{2x^2+2x+3}+\sqrt{2x^2-1}}+\frac{1}{\sqrt{x^2-x+2}+\sqrt{x^2-3x-2}}=0\left(2\right)\end{cases}}\)
PT (2) vô nghiệm do VT>0 với x tm ĐKXĐ
Vậy x=-2
Giải phương trình: \(2.\left(x-\sqrt{2x^2+5x-3}\right)=1+x.\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)
\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)
Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm
Vậy PT có nghiệm duy nhất \(x=1\)
Giải phương trình:
\(\sqrt[3]{x^2+3x+1}+x^2=\sqrt[3]{5x+1}+2x\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2+3x+1}=a\\\sqrt[3]{5x+1}=b\end{matrix}\right.\)
\(\Rightarrow a+a^3-b^3=b\)
\(\Leftrightarrow a-b+\left(a-b\right)\left(a^2+ab+b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt[3]{x^2+3x+1}=\sqrt[3]{5x+1}\)
\(\Leftrightarrow x^2+3x+1=5x+1\)
\(\Leftrightarrow...\)
giải phương trình
\(2X^2+5X-1=7\sqrt{X^3-1}\)
\(pt\Leftrightarrow3\left(x-1\right)+2\left(x^2+x+1\right)=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
Ta thấy x=1 không là nghiệm chia 2 vế cho x-1 ta đc:
\(3+\frac{2\left(x^2+x+1\right)}{x-1}=7\sqrt{\frac{x^2+x+1}{x-1}}\)
Đặt \(t=\sqrt{\frac{x^2+x+1}{x-1}}\left(t\ge0\right)\)
\(\Leftrightarrow3+2t^2=7t\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=\frac{1}{2}\end{cases}\left(tm\right)}\)
Với \(t=3\Rightarrow\sqrt{\frac{x^2+x+1}{x-1}}=3\)\(\Leftrightarrow\frac{x^2+x+1}{x-1}=9\)
\(\Leftrightarrow x^2+x+1=9x-9\)
\(\Leftrightarrow x^2-8x+10=0\)
\(\Leftrightarrow x=4\pm\sqrt{6}\)
Với \(t=\frac{1}{2}\Rightarrow\sqrt{\frac{x^2+x+1}{x-1}}=\frac{1}{2}\)\(\Leftrightarrow x^2+x+1=\frac{1}{4}x-\frac{1}{4}\)
\(\Leftrightarrow x^2+\frac{3}{4}x+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{8}\right)^2+\frac{71}{64}>0\)(vô nghiệm)
Vậy pt trên có nghiệm thỏa mãn là \(x=4\pm\sqrt{6}\)
\(2x^2+5x-1=7\sqrt{x^3-1}\)
Giải phương trình
giải phương trình \(x^2+5x+11=\left(x+7\right).\sqrt{2x^2+1}\)