tìm tất cả các cặp số nguyên dương (x,y) thỏa mãn : 2x2-xy-x-2y+1=0
Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn điều kiện 2x2 - 2xy + x + y + 2 = 0
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
Tìm tất cả các cặp nghiệm nguyên dương (x;y) thỏa mãn: x^2-y^2+x^2y-xy=x+14
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn
2x^2-xy-x-2y+1=0
tìm các cặp số nguyên dương (x,y) thỏa mãn : 2x^2-xy-x-2y+1=0
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
Tìm all các cặp số nguyên dương(x,y) thỏa mãn 2x^2-xy-x-2y+1=0
Tìm tất cả các cặp số nguyên dương (xy) thỏa mãn x2+y2-2(x+y) = xy
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
Tiếp tục phần tiếp theo
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\) (vô lý vì 2=2+2.2)
⇒ Không có cặp (x;y) nguyên dương nào thỏa mãn đề bài
Tìm tất cả các cặp số nguyên ;x y thoả mãn điều kiện x^2-xy-x+2y+1=0
Tìm tất cả các cặp số nguyên ;x y thoả mãn điều kiện
x^2-xy-x+2y+1=0
PT\(\Leftrightarrow x^2-x+1=xy-2y\)
\(\Leftrightarrow x^2-2x+x-2+3=y(x-2)\)
\(\Leftrightarrow y\left(x-2\right)-x^2+2x-x+2=3\)
\(\Leftrightarrow y\left(x-2\right)-\left(x+1\right)\left(x-2\right)=3\)
\(\Leftrightarrow\left(x-2\right)\left(y-x-1\right)=3\) (*)
Vì \(\) \(x,y\in Z\) nên \(\begin{cases}x-2\in Z\\ y-x-1\in Z\end{cases}\)
=>Để (*) xảy ra thì tích của 2 biểu thức phải là tích của 2 ước số nguyên của 3
Đến đây bạn thay \(\left(x-2;y-x-1\right)\in{ ( 1 , 3 ) , ( 3 , 1 ) , ( - 1 , - 3 ) , ( - 3 , - 1 ) }\)
\(\Rightarrow(x-2;y-x-1)\in{(1;3),(3;1),(-1;-3),(-3;-1)}\)
\((x;y)\in{(3;7),(5;7),(1;-1),(-1;-1)}\)
Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn: \(^{x^2+2y^2-3xy+2x-4y+3=0}\)