Rút gọn biểu thức:
\(\sqrt{49b}+2\sqrt{40b}-3\sqrt{90b}\left(b\ge0\right)\)
Rút gọn biểu thức \(\sqrt{16b}\) + \(2\sqrt{40b}\) - \(3\sqrt{90b}\) với b ≥ 0 là
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}=4\sqrt{b}+2.2\sqrt{10b}-3.3\sqrt{10b}=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}=4\sqrt{b}-5\sqrt{10b}\)
RÚT GỌN :
\(\sqrt{16b}+2\sqrt{40}-3\sqrt{90b}\left(b\ge0\right)\)
Rút gọn các biểu thức :
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với \(b\ge0\)
ĐS: a) 3√5;35;
b) 9√22;922;
c) 15√2−√5;152−5;
d) 17√25.
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\) = \(-\sqrt{3}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\) = \(7\sqrt{2}-6\sqrt{2}+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) = \(3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) = \(6\sqrt{a}\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) = \(4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
= \(4\sqrt{b}-5\sqrt{10b}\)
Rút gọn: (Giải chi tiết từng bước)
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với b \(\ge\) 0
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=\sqrt{4^2\cdot b}+2\sqrt{2^2\cdot10b}-3\sqrt{3^2\cdot10b}\)
\(=4\sqrt{b}+2\cdot2\sqrt{10b}-3\cdot3\sqrt{10b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}+\left(4\sqrt{10b}-9\sqrt{10b}\right)\)
\(=4\sqrt{b}-5\sqrt{10b}\)
`a, sqrt(16b) + 2 sqrt(40b) - 3 sqrt(90b)`
`= 4sqrtb + 2sqrt(8.5b) - 3 sqrt(9.10b)`
`= 4 sqrt b + 4sqrt(10b) - 9 sqrt(10b)`
`= 4sqrtb-5sqrt(10b)`.
Rút gọn:
2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với a \(\ge\) 0
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) với b \(\ge\) 0
2) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)
\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}\)
\(=\left(7-6+1\right)\sqrt{2}\)
\(=2\sqrt{2}\)
3) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\)
\(=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)
\(=\left(3-4+7\right)\sqrt{a}\)
\(=6\sqrt{a}\)
4) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}-5\sqrt{10b}\)
Rút gọn: \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
Cho biểu thức B = \(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn biểu thức B
b) Chứng minh \(B\ge0\)
a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)
\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)
b) Xét tử:
\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1)
Xét mẫu:
\(x+\sqrt{xy}+y\)
\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)
Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2)
Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm)
Rút gọn biểu thức \(P=\left(\dfrac{\sqrt{x^3+1}}{\sqrt{x}+1}+\sqrt{x}\right):\left(x+1\right);x\ge0\)
Rút gọn biểu thức
\(a.\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(b.\sqrt{41-\sqrt{160}}+\sqrt{49+\sqrt{90}}\)
\(c.\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\left(x\ge0;y\ge0;x\ne y\right)\)
\(d.\dfrac{y+1-2\sqrt{y}}{\sqrt{y}-1}\left(y\ge0;y\ne1\right)\)
\(e.\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+2-2\sqrt{x+1}}\)
a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
=2
c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)