Cho tam giác ABC vuông ở A,AH=12cm,AC=16cm,đường cao AH,đường phân giác AD.Tính HB,HD,HC
Cho tam giác ABC vuông ở A,AH=12cm,AC=16cm,đường cáo AH,đường phân giác AD.Tính HB,HD,HC
Cho tam giác ABC vuông tại A . Biết AB = 12cm , AC = 16cm,phân giác AD , đường cao AH . Tính HD , HB , HC.
Ta có: BC^2 = AB^2 + AC^2
= 12^2 + 16^2 = 400
=> BC = √400 = 20 (cm)
Δ ABC vuông có đường cao AH:
=> AB^2 = BH.BC
=> BH = AB^2/BC = 12^2/20 = 7.2 (cm)
=> CH = 20 - 7.2 = 12.8 (cm)
Ta có: AD là phân giác
=> BD/CD = AB/AC
=>( BD + CD)/CD = (AB + AC)/AC
=> 20/CD = 28/16
=> CD = 80/7
=> HD = CH - CD
= 12.8 - (80/7)
= 48/35 (cm)
(HC tự tính nha)
cho tam giác ABC vuông tại A , AB = 12cm , AC = 16cm , tia phân giác AD , đường cao Ah , Tinh HD , HB , HC
tự vẽ hình..
\(BC=\sqrt{AC^2+AB^2}=\sqrt{12^2+16^2}=20cm\)( Định lý pitago cho tam giác vuông ABC)
\(\Rightarrow BH=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2cm\)( Áp dụng hệ thức lương cho tam giác vuông ABC)
\(HC=BC-HB=20-7,2=12,8cm\)
Áp dụng tính chất tia phân giác: \(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{12+16}=\frac{20}{12+16}=\frac{5}{7}\)
\(\Rightarrow BD=\frac{AB.5}{7}=\frac{12.5}{7}\approx8,571\)( chả biết ý này có đ ko nx)
Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Theo Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=20\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{144}{20}=\dfrac{36}{5}\)cm
=> CH = BC - BH = \(20-\dfrac{36}{5}=\dfrac{64}{5}\)cm
Vì AD là p/g : \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{CD}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{20}{12+16}=\dfrac{5}{7}\)
\(\Rightarrow BD=\dfrac{5}{7}.12=\dfrac{60}{7}\)cm
=> HD = BD - BH = \(\dfrac{60}{7}-\dfrac{36}{5}=\dfrac{48}{35}\)cm
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=20(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=7.2\left(cm\right)\\CH=12.8\left(cm\right)\end{matrix}\right.\)
Cho ∆ABC vuông tại A , AB = 12cm , AC = 16cm , phân giác AD , đường cao AH . Tính HB , HC , HD
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm)
Áp dụng tính chất tia phân giác:
$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$
Mà: $BD+DC=BC=20$
$\Rightarrow BD=20:(3+4).3=\frac{60}{7}$ (cm)
Theo hệ thức lượng của tam giác vuông:
$HB=\frac{AB^2}{BC}=\frac{12^2}{20}=7,2$ (cm)
$CH=BC-HB=20-7,2=12,8$ (cm)
$HD=BD-BH=\frac{60}{7}-7,2=\frac{48}{35}$ (cm)
1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
1)
a) Xét ΔABC có
\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)
Vậy: AH=3,6cm
b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)
hay CH=2,7(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH=BC-CH=7,5-2,7=4,8(cm)
Vậy: BH=4,8cm; CH=2,7cm
1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go
=>\(\Delta ABC\) vuông tại A
Ta có: AB.AC=BC.AH
=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\) (cm)
b)Ta có:AB2=BC.BH
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{7,5}=4,8\) (cm)
Ta có:BH+CH=BC
=>CH=BC-BH=7,5-4,8=2,7 (cm)
cho tam giác ABC vuông tại A, có AB = 12cm, AC=16cm, phân giác AD,đường cao AH. tính đọ dài các đoạn HB, HC, HD
Ta có: BC2 = AB2 + AC2 \(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)
\(AB^2=HB.BC\Rightarrow HB=\frac{AB^2}{BC}=\frac{12^2}{20}=\frac{36}{5}=7,2cm\)
\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{16^2}{20}=\frac{64}{5}=12,8cm\)
Vì AD là phân giác góc BAC nên ta có :
\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\Rightarrow DC=\frac{4}{7}BC=\frac{4}{7}.20=\frac{80}{7}cm\)
=> HD = BC - (HB + DC) \(=20-\left(7,2+\frac{80}{7}\right)=\frac{48}{35}cm\)
Vậy HB = 7,2cm ; HC = 12,8cm ; HD = 48/35cm
Cho tam giác ABC vuông tại A, AB = 9cm, AC = 12cm, phân giác AD, đường cao AH. Tính HB,HC,HD
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=5,4cm\\CH=9,6cm\end{matrix}\right.\)
Cho tam giác ABC vuông tại A . Biết AB = 12cm , AC = 16cm,phân giác AD , đường cao AH . Tính HD , HB , HC.
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=144+256=400\Rightarrow BC=20\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{144}{20}=\frac{36}{5}\)cm
* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{256}{20}=12,8\)cm
Vì AD là đường pg nên \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Áp dụng tunhs chất dãy tỉ số bằng nhau
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{BC}{AB+AC}=\frac{20}{28}=\frac{5}{7}\)
\(\Rightarrow BD=\frac{5}{7}.AB=\frac{5}{7}.12=\frac{60}{7}\)cm
=> \(HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{48}{35}\)cm
Cho tam giác ABC vuông ở A,AB=12cm,AC=16cm,phân giác AD,đường cao AH.Tính độ dài các đoạn HB,HD,HC,CD
Áp dụng định lí Pi - ta go \(\Delta ABC\)vuông tại A :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Áp dụng hẹ thức về cạnh và đường cao cho \(\Delta ABC\) có đường cao AH :
AB.AC=BC.AH
=> AH = AB.AC/BC
=> AH = 12.16/20
=> AH=9, 6( cm )
Ta có : \(\frac{AB^2}{AC^2}=\frac{BC.BH}{BC.CH}=\frac{BH}{CH}=\frac{12^2}{16^2}=\frac{9}{16}\)
\(\Rightarrow CH=\frac{16BH}{9}\)
Áp dụng hệ thức về cạnh và đường cao cho tam giác ABC và đường cao AH :
\(\Rightarrow BH.\frac{16BH}{9}=AH^2\)
=> BH2 = \(AH^2:\frac{16}{9}=9,6^2:\frac{16}{9}=51,84\)
=> BH = 7,2 ( cm )
=> CH = AH2 / BH = 12,8 ( cm )
Áp dụng tính chất của tia phân giác tam giác ABC phân giác AD
BD/AB=DC/AC
Áp dụng dãy tỉ số bằng nhau :
BD/AB=CD/AC=BD+CD/AB+AC = BC/AB+AC=5/7
=> DC/AC=5/7
=> DC = 5AC/7
=> DC = 80/7 ( cm )
Mà HD + HC = CD
=> HD = 80/7-12,8 =
Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=\sqrt{12^2+16^2}=20\)
Áp dụng hệ thức lượng ta có:
\(AB^2=HB.BC\)
\(\Rightarrow\)\(HB=\frac{AB^2}{BC}=7,2\)
\(\Rightarrow\)\(HC=BC-HB=12,8\)
AD là phân giác nên ta có: \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{20}{12+16}=\frac{5}{7}\)
suy ra: \(\frac{DB}{AB}=\frac{5}{7}\)\(\Rightarrow\)\(DB=8\frac{4}{7}\) \(\Rightarrow\)\(HD=DB-HB=1\frac{13}{35}\)
\(\frac{DC}{AC}=\frac{5}{7}\)\(\Rightarrow\)\(DC=11\frac{3}{7}\)