Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen hoan
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 9 2021 lúc 10:03

Từ bài toán này (mà bạn đã hỏi cách đây vài bữa):

cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\) - Hoc24

Ta có: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)

Do đó: \(VT\ge\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\)

Lại có: \(\dfrac{a+b+c}{\sqrt[3]{abc}}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}=3\)

Đặt \(\dfrac{a+b+c}{\sqrt[3]{abc}}=x\ge3\Rightarrow VT\ge x+\dfrac{1}{x}=\dfrac{x}{9}+\dfrac{1}{x}+\dfrac{8x}{9}\ge2\sqrt{\dfrac{x}{9x}}+\dfrac{8}{9}.3=\dfrac{10}{3}\) (đpcm)

Tường Nguyễn Thế
Xem chi tiết
Hoàng
Xem chi tiết
Đào Linh
Xem chi tiết
Đặng Anh Thư
30 tháng 9 2017 lúc 4:57

ta có : \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(ac+bc+ab\right)\)

\(=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ab}{2}+\dfrac{ac}{2}+\dfrac{bc}{2}+\dfrac{ac}{2}\right)\)

\(\ge2.\sqrt{\dfrac{a^3}{b}.bc}+2\sqrt{\dfrac{b^3}{c}.ca}+2\sqrt{\dfrac{c^3}{a}.ab}-2\sqrt{\dfrac{ab.bc}{4}}-2\sqrt{\dfrac{ab.ac}{4}}-2\sqrt{\dfrac{bc.ac}{4}}\)

\(\ge2a\sqrt{ac}+2b\sqrt{ba}+2c\sqrt{cb}-b\sqrt{ac}-a\sqrt{bc}-c\sqrt{ab}=a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\left(ĐPCM\right)\)

Neet
30 tháng 9 2017 lúc 23:12

Áp dụng BĐT cauchy-schwarz:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

BĐT cần chứng minh tương đương :

\(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3c}+\sqrt{b^3a}+\sqrt{c^3b}\right)\)

Thật vậy, Áp dụng BĐT \(\left(X+Y+Z\right)^2\ge3\left(XY+YZ+ZX\right)\)

Với \(\left\{{}\begin{matrix}X=a+\sqrt{bc}-\sqrt{ac}\\Y=b+\sqrt{ac}-\sqrt{ab}\\Z=c+\sqrt{ab}-\sqrt{bc}\end{matrix}\right.\) ta có ngay ĐPCM. ( mất chút time khai triển)

Dấu = xảy ra khi X=Y=Z hay a=b=c

Đặng Anh Thư
1 tháng 10 2017 lúc 10:16

mk có cách chứng minh khác:

\(a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\le\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)

áp dụng bất đẳng thức cauchy cho 2 số dương \(\dfrac{a^3}{b}\)\(ab\) ta có : \(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\) (1)

tương tự ta cũng có:\(\dfrac{b^3}{c}+bc\ge2b^2\) (2)

\(\dfrac{c^3}{a}+ca\ge2c^2\) (3)

từ(1);(2);(3) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-ab-bc-ca\)(*)

còn chứng minh :

\(2\left(a^2+b^2+c^2\right)-ab-bc-ca\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)-3\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (**)

(luôn đúng vì \(a^2+b^2+c^2\ge ab+bc+ca\) )

từ (*);(**) suy ra đpcm

dấu "=" xảy ra khi a=b=c

Admin (a@olm.vn)
Xem chi tiết
Phạm Bá Huy
13 tháng 7 2021 lúc 13:54

Đặt x=\sqrt{\dfrac{a}{b}},y=\sqrt{\dfrac{b}{c}},z=\sqrt{\dfrac{c}{a}} thì  x,y,z>0 và xyz=1 . Bất đẳng thức cần chứng minh trở thành      x^3+y^3+z^3\ge x^2+y^2+z^2.

Áp dụng bất đẳng thức Cô si cho 3 số dương ta có

                x^3+x^3+1^3\ge3\sqrt[3]{x^3.x^3.1^3} hay  2x^3+1\ge3x^2.

Tương tự, 2y^3+1\ge3y^2;2z^3+1\ge3z^2. Cộng theo vế các bất đẳng thức nhận được ta có            2\left(x^3+y^3+z^3\right)+3\ge2\left(x^2+y^2+z^2\right)+\left(x^2+y^2+z^2\right)

                                                      =2\left(x^2+y^2+z^2\right)+3\sqrt[3]{x^2y^2z^2}

  \ge2\left(x^2+y^2+z^2\right)+3\sqrt[3]{1}

Do đó         x^3+y^3+z^3\ge x^2+y^2+z^2. Đẳng thức xảy ra khi và chỉ khi  

       x=y=z=1\Leftrightarrow a=b=c>0.

Khách vãng lai đã xóa
Hương	Hà Huỳnh
29 tháng 8 2021 lúc 10:46

x=y=z=1

Khách vãng lai đã xóa
Trúc	Huỳnh Thị Thanh
29 tháng 8 2021 lúc 11:57

undefined

Khách vãng lai đã xóa
Vũ Tiền Châu
Xem chi tiết
Feed Là Quyền Công Dân
4 tháng 2 2018 lúc 23:22

Ko lq nhưng ta chuẩn hóa \(a+b+c=3\). So:

\(M\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{3}{2}\)

minh nguyen
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:30

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

Nguyễn Việt Lâm
19 tháng 4 2022 lúc 21:23

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

Mika Yuuichiru
Xem chi tiết