ta có : \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(ac+bc+ab\right)\)
\(=\dfrac{a^3}{b}+bc+\dfrac{b^3}{c}+ca+\dfrac{c^3}{a}+ab-\left(\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ab}{2}+\dfrac{ac}{2}+\dfrac{bc}{2}+\dfrac{ac}{2}\right)\)
\(\ge2.\sqrt{\dfrac{a^3}{b}.bc}+2\sqrt{\dfrac{b^3}{c}.ca}+2\sqrt{\dfrac{c^3}{a}.ab}-2\sqrt{\dfrac{ab.bc}{4}}-2\sqrt{\dfrac{ab.ac}{4}}-2\sqrt{\dfrac{bc.ac}{4}}\)
\(\ge2a\sqrt{ac}+2b\sqrt{ba}+2c\sqrt{cb}-b\sqrt{ac}-a\sqrt{bc}-c\sqrt{ab}=a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\left(ĐPCM\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
BĐT cần chứng minh tương đương :
\(\left(a+b+c\right)^2\ge3\left(\sqrt{a^3c}+\sqrt{b^3a}+\sqrt{c^3b}\right)\)
Thật vậy, Áp dụng BĐT \(\left(X+Y+Z\right)^2\ge3\left(XY+YZ+ZX\right)\)
Với \(\left\{{}\begin{matrix}X=a+\sqrt{bc}-\sqrt{ac}\\Y=b+\sqrt{ac}-\sqrt{ab}\\Z=c+\sqrt{ab}-\sqrt{bc}\end{matrix}\right.\) ta có ngay ĐPCM. ( mất chút time khai triển)
Dấu = xảy ra khi X=Y=Z hay a=b=c
mk có cách chứng minh khác:
\(a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}\le\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)
áp dụng bất đẳng thức cauchy cho 2 số dương \(\dfrac{a^3}{b}\) và \(ab\) ta có : \(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\) (1)
tương tự ta cũng có:\(\dfrac{b^3}{c}+bc\ge2b^2\) (2)
\(\dfrac{c^3}{a}+ca\ge2c^2\) (3)
từ(1);(2);(3) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-ab-bc-ca\)(*)
còn chứng minh :
\(2\left(a^2+b^2+c^2\right)-ab-bc-ca\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)-3\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow3\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (**)
(luôn đúng vì \(a^2+b^2+c^2\ge ab+bc+ca\) )
từ (*);(**) suy ra đpcm
dấu "=" xảy ra khi a=b=c