Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oanh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2021 lúc 21:32

c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)

\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)

\(=4m^2+8m+4-8m-4\)

\(=4m^2\ge0\forall m\)

Do đó, phương trình luôn có nghiệm

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)

Ta có: \(x_1\cdot x_2=2m+1\)

\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)

\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)

\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)

\(\Leftrightarrow16m^2-10m-17=0\)

\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)

𝓓𝓾𝔂 𝓐𝓷𝓱
2 tháng 4 2021 lúc 22:34

Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh 

b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)

              \(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)

              \(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)

\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)

\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)

  Vậy ...

lo9_winner
3 tháng 7 2021 lúc 20:10

\Delta'=1^2-m=1-mΔ′=12−m=1−m

phương trình có 2 nghiệm <=>\Delta&#x27;\ge0Δ′≥0

<=>1-m\ge01−m≥0

<=>m\le1m≤1

+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1​+x2​=−2(1)x1​x2​=m(2)​

Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1​+2x2​=1(3)

từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1​+x2​=−23x1​+2x2​=1​ <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1​=5x2​=−7​. Thay vào (2) : 5.(-7)= m <=> m= -35

Nguyễn Minh Khang 9/9
Xem chi tiết
Nguyễn Huy Tú
16 tháng 2 2022 lúc 19:11

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

missing you =
16 tháng 2 2022 lúc 20:00

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

Lam Phương
Xem chi tiết
Nguyễn thị thanh ngân
Xem chi tiết
Akai Haruma
12 tháng 5 2021 lúc 23:26

Đề có vấn đề. Bạn xem lại!

Chanhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 17:42

loading...  

Rosie
Xem chi tiết
Đỗ Thị Minh Ngọc
27 tháng 4 2022 lúc 8:41

Tham khảo:

undefined

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 8 2017 lúc 6:00

Phương trình x 2 + 2x + m – 1 = 0 có a = 1  0 và ∆ '  = 1 2 – (m – 1) = 2 – m

Phương trình có hai nghiệm  x 1 ;   x 2 ⇔ ∆ ' ≥ 0 ⇔ 2 – m ≥ 0 ⇔ m ≤ 2

Áp dụng định lý Vi – ét ta có x 1 + x 2 = − 2 ( 1 ) ; x 1 . x 2 = m – 1 ( 2 )

Theo đề bài ta có: 3 x 1 + 2 x 2 = 1 ( 3 )

Từ (1) và (3) ta có:

x 1 + x 2 = − 2 3 x 1 + 2 x 2 = 1 ⇔ 2 x 1 + 2 x 2 = − 4 3 x 1 + 2 x 2 = 1 ⇔ x 1 = 5 x 2 = − 7

Thế vào (2) ta được: 5.(−7) = m – 1  m = −34 (thỏa mãn)

Đáp án: A

Gempio Louis
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 2022 lúc 15:35

\(\Delta'=1-\left(m-3\right)=4-m>0\Rightarrow m< 4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)

Do \(x_1+x_2=2\Rightarrow x_2=2-x_1\)

Ta có:

\(x_1^2+x_1x_2=2x_2-12\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)=2\left(2-x_1\right)-12\)

\(\Leftrightarrow2x_1=4-2x_1-12\)

\(\Leftrightarrow4x_1=-8\Rightarrow x_1=-2\Rightarrow x_2=4\)

Thế vào \(x_1x_2=m-3\Rightarrow m-3=-8\)

\(\Rightarrow m=-5\)

NO ENGLISH BRO
Xem chi tiết
lê quang hiếu
Xem chi tiết
Incursion_03
28 tháng 4 2019 lúc 22:02

Ta có \(\Delta'=\left(m-2\right)^2+m-2\)

                \(=m^2-4m+4+m-2\)

                 \(=m^2-3m+2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow\orbr{\begin{cases}m< 1\\m>2\end{cases}}\)

Teo Vi-et \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+2\end{cases}}\)

Ta có \(x_1+2x_2=2\)

\(\Leftrightarrow\left(x_1+x_2\right)+x_2=2\)

\(\Leftrightarrow2\left(m-2\right)+x_2=2\)

\(\Leftrightarrow2m-4+x_2=2\)

\(\Leftrightarrow x_2=6-2m\)

Ta có \(x_1+x_2=2\left(m-2\right)\)

\(\Leftrightarrow x_1+6-2m=2m-4\)

\(\Leftrightarrow x_1=4m-10\)

Thay vào tích x1 . x2 được

\(x_1x_2=-m+2\)

\(\Leftrightarrow\left(4m-10\right)\left(6-2m\right)=-m+2\)

\(\Leftrightarrow24m-8m^2-60+20m=-m+2\)

\(\Leftrightarrow8m^2-45m+62=0\)

Có \(\Delta=41\)

\(\Rightarrow\orbr{\begin{cases}m=\frac{45-\sqrt{41}}{16}\left(tm\right)\\m=\frac{45+\sqrt{41}}{16}\left(tm\right)\end{cases}}\)