cho phương trình x2-4x+n=0 (1) với n là tham số
1,giải phương trình (1) khi n=3
2, tìm n để phương trình (1) có nghiệm
Cho phương trình:x^2-6x+2n-3=0 (với n là tham số ) (1)
1) Giải phương trình (1) với n=4
2) Tìm n để phương trình (1) có hai nghiệm phân biệt x1;x2 thỏa mãn:
(x1^2 -5x1 +2n -4)(x2^2 - 5x2 +2n-4)=-4
Thay n = 4 vào pt (1) ta có
\(x^2-6x+5=0\\ ta.có.a+b+c=1-6+5=0\\ Vậy.pt.có.n_o:\\ x_1=1;x_2=\dfrac{c}{a}=5\)
\(Ta.có:\Delta=b^2-4ac=....=-8n+48\\ Để.pt.\left(1\right).có.1.n_o.phân.biệt.thì.\Delta>0\\ \Leftrightarrow n< 6\)
Vậy m < 6 thì pt (1) có nghiệm phân biệt \(x_1;x_2\) nên theo Vi ét ta có
\(x_1+x_2=\dfrac{-b}{a}=6\\ x_1x_2=\dfrac{c}{a}=2n-3\)
Ta có
\(x^2-6x+2n-3=0\\ \Leftrightarrow x^2-5x+2n-4=x-1\)
Vì x1 x2 là nghiệm pt \(x^2-6x+2n-3=0\) nên x1 x2 là nghiệm PT \(x^2-5x+2n-4=x-1\) nên ta có
\(x_1^2-5x+2x-4=x_1-1.và\\ x_2^2-5x_2+2n-4=x_2-1\\ \Rightarrow\left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=\left(x_1-1\right)\left(x_2-1\right)\)
\(Mà\\ \left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=-4\\ Nên\left(x_1-1\right)\left(x_2-1\right)=-4\\ \Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\\ \Leftrightarrow2n-3-6+1=-4\\ \Leftrightarrow2n=4\Rightarrow n=2\left(tm\right)\\ ......\left(kl\right)\)
Cho phương trình: 2x2 – 4x + m – 5 = 0 (x là ẩn số; m ,n là tham số). Xác định m và n để phương trình có hai nghiệm là: x1 = 1 và x2 = -2.
x1+x2=2
mà 1-2=-1
nên không có m,n thỏa mãn
Cho phương trình bậc hai ( ẩn x) : x² + 4x + m +1= 0 (*) (m là tham số)
a) Giải phương trình khi m = -1
b) Tìm m để phương trình có một nghiệm bằng 2.Tìm nghiệm còn lại.
c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12 + x12 =10.
a)thay m=1 vào pt ta có
\(x^2+4x=0\)
<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b) thay x=2 vào pt ta có: 13+m=0
<=>m=-13
thay m=-13 vào pt ta có
\(x^2+4x-12=0\)
<=>(x-2)(x+6)=0
<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)
vậy với m=-13 thì nghiệm còn lại là x=-6
c) để pt có 2 nghiệm pb thì \(\Delta>0\)
<=>16-4m-4>0
<=>3-m>0
<=>m<3
áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)
theo đề bài ta có \(x_1^2+x_2^2=10\)
<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>16-2m-2=10
<=>2-m=0
<=>m=2(nhận)
vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.
Cho phương trình: x2 - (2m - n)x + (2m + 3n - 1) = 0 (m,n là tham số)
Tìm m,n để phương trình có hai nghiệm x1,x2 thỏa mãn x1 + x2 = -1 và x12 + x22 = 13
Giả sử pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1^2+x_2^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=-1\\m=-1\end{matrix}\right.\)
Cho phương trình: 2x2 – 4x + m – 5 = 0 (x là ẩn số; m ,n là tham số). Xác định m và n để phương trình có hai nghiệm là: x1 = 1 và x2 = -2.
Cho phương trình x2-6x+2m-3=0(1), với m là tham số
1. Giải phương trình(1) khi m=-2
2. Tìm giá trị của m để phương trình (1) có 2 nghiệm phân biệt
1) Với m=-2
\(\left(1\right)\Leftrightarrow x^2-6x+2.\left(-2\right)-3=0\Leftrightarrow x^2-6x-7=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)
2) PT (1) là PT bậc 2 có:
\(\Delta=\left(-6\right)^2-4.\left(2m-3\right)=-8m+48\)
Để PT có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-8m+48>0\Leftrightarrow m< 6\)
Cho phương trình x2 - 2(m-1)x +2m -3 = 0 (1) với m là tham số
a) Giải phương trình khi m = 2
b) Tìm m để (1) có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia
a, bạn tự làm
b, Để pt có 2 nghiệm khi
\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\left(1\right)\\x_1x_2=2m-3\left(2\right)\end{matrix}\right.\)
Ta có \(x_1=2x_2\left(3\right)\)
Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2\left(m-1\right)\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2\left(m-1\right)}{3}\\x_1=\dfrac{4\left(m-1\right)}{3}\end{matrix}\right.\)
Thay vào (2) ta đc
\(\dfrac{8\left(m-1\right)^2}{9}=2m-3\Leftrightarrow8\left(m-1\right)^2=18m-27\)
\(\Leftrightarrow8m^2-16m+8=18m-27\Leftrightarrow8m^2-34m+35=0\)
\(\Leftrightarrow m=\dfrac{5}{2};m=\dfrac{7}{4}\)
Cho phương trình: 2x2 – 4x + m – 5 = 0 (x là ẩn số; m ,n là tham số). Xác định m và n để phương trình có hai nghiệm là: x1 = 1 và x2 = -2.
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
Cho phương trình
x^2-x+m=0 ( 1) (m là tham số)
a, Giải phương trình khi m=-6
b, tìm m để pt (1) có nghiệm
c,Tìm n sao cho pt x^2-97x+n=0 (2) ( n là tham số) có các nghiệm là lũy thừa bậc 4 của các nghiệm phương trình (1)
CÂU C
HELP>>>
Gọi x1,x2 là hai nghiệm của pt (1) : x^2 - 97x + a = 0 và x3,x4 là 2 nghiệm của pt (2) : x^2 - x + b = 0
Theo hệ thức Vi-ét :
x1 + x2 = 97 và x1.x2 = a
x3 + x4 = 1 và x3.x4 = b
Theo đề bài :
* x1 + x2 = x3^4 + x4^4
<=> x1 + x2 = (x3^2 + x4^2)^2 - 2.(x3.x4)^2
<=> x1 + x2 = [(x3 + x4)^2 - 2.x3.x4]^2 - 2(x3.x4)^2
<=> 97 = (1 - 2b)^2 - 2b^2
<=> 2b^2 - 4b - 96 = 0 (1)
* x1.x2 = (x3.x4)^4
<=> b^4 = a (2)
Từ (1) được b = 8 hoặc b = -6
Suy ra a = 4096 hoặc a = 1296
Thử lại nhận a = 1296
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20130328075420AAV3DV4
omg thanks rapton321
mik viết mà nó ko hiện lên
viết đề mà ko có