Những câu hỏi liên quan
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2021 lúc 19:51

\(1+\dfrac{9}{3\left(ab+bc+ca\right)}\ge1+\dfrac{9}{\left(a+b+c\right)^2}\ge2\sqrt{\dfrac{9}{\left(a+b+c\right)^2}}=\dfrac{6}{a+b+c}\)

Bình luận (0)
Phạm Thúy Vy
Xem chi tiết
Kuro Kazuya
15 tháng 7 2017 lúc 13:15

\(VT=\dfrac{a}{b\left(b^2+a\right)}+\dfrac{b}{c\left(c^2+b\right)}+\dfrac{c}{a\left(a^2+c\right)}\)

\(VT=\dfrac{a+b^2-b^2}{b\left(b^2+a\right)}+\dfrac{b+c^2-c^2}{c\left(c^2+b\right)}+\dfrac{c+a^2-a^2}{a\left(a^2+c\right)}\)

\(VT=\dfrac{1}{b}-\dfrac{b}{b^2+a}+\dfrac{1}{c}-\dfrac{c}{c^2+b}+\dfrac{1}{a}-\dfrac{a}{a^2+c}\)

\(VT=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\left(\dfrac{b}{b^2+a}+\dfrac{c}{c^2+b}+\dfrac{a}{a^2+c}\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\dfrac{b}{b^2+a}\le\dfrac{b}{2b\sqrt{a}}=\dfrac{1}{2\sqrt{a}}\)

Thiết lập tương tự và thu lại tao có

\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\sqrt{\dfrac{1}{a}}\le\dfrac{\dfrac{1}{a}+1}{2}\)

Tương tự ta có

\(\sqrt{\dfrac{1}{b}}\le\dfrac{\dfrac{1}{b}+1}{2};\sqrt{\dfrac{1}{c}}\le\dfrac{\dfrac{1}{c}+1}{2}\)

Thu lại ta có

\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{2}\left(\dfrac{\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3}{2}\right)\)

\(\Rightarrow VT\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3\right)\)

\(\Rightarrow VT\ge\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\)

Áp dụng bất đẳng thức Cauchy dạng phân thức

\(\Rightarrow\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\ge\dfrac{3}{4}.\dfrac{9}{a+b+c}-\dfrac{3}{4}=\dfrac{3}{2}\)

\(\Rightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Bình luận (0)
Lê Đức Lương
Xem chi tiết
Văn Quyết
Xem chi tiết
Akai Haruma
5 tháng 4 2018 lúc 15:20

Lời giải:

Do \(3=ab+bc+ac\) nên ta có:

\(P=\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\)

\(=\frac{a^3}{b^2+ab+bc+ac}+\frac{b^3}{c^2+ab+bc+ac}+\frac{c^3}{a^2+ab+bc+ac}\)

\(=\frac{a^3}{(b+c)(b+a)}+\frac{b^3}{(c+a)(c+b)}+\frac{c^3}{(a+b)(a+c)}\)

Áp dụng BĐT AM-GM:

\(\frac{a^3}{(b+c)(b+a)}+\frac{b+c}{8}+\frac{b+a}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

\(\frac{b^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq 3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)

\(\frac{c^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq 3\sqrt[3]{\frac{c^3}{64}}=\frac{3c}{4}\)

Cộng các BĐT trên vào và rút gọn:

\(\Rightarrow P+\frac{a+b+c}{2}\geq \frac{3}{4}(a+b+c)\)

\(\Rightarrow P\geq \frac{a+b+c}{4}(1)\)

Ta có một hệ quả quen thuộc của BĐT AM-GM đó là:

\((a+b+c)^2\geq 3(ab+bc+ac)\Leftrightarrow (a+b+c)^2\geq 9\)

\(\Rightarrow a+b+c\geq 3(2)\)

Từ \((1); (2)\Rightarrow P\geq \frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (2)
Trần Thị Hà Phương
Xem chi tiết
Lê Đức Lương
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 15:36

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm

Bình luận (0)
⭐Hannie⭐
Xem chi tiết
? 12Yo.Sh00t3r
25 tháng 6 2023 lúc 21:09

Áp dụng bất đẳng thức Cô si cho hai số dương ta có:

(a2 + b2) + (b2 + c2) + (c2 + a2) ≥ 2ab + 2bc + 2ca

=> 2(a2 + b2 + c2 ) ≥ 2 (ab + bc + ca) (1) (a2 + 1) + (b2 + c2) + (c2 + a2) ≥ 2a + 2b + 2c

=> a2 + b2 + c2 + 3 ≥ 2(a + b + c) (2)

Cộng các vế của (1) và (2) ta có:

3 ( a2 + b2 + c2 ) + 3 ≥ 2 (ab + bc + ca + a + b + c)

=> 3( a2 + b2 + c2 ) + 3 ≥ 12 => a2 + b2 + c2 ≥ 3.

Ta có: (a^3/b + ab ) + ( b^3/c + bc ) + ( c^3/a + ca)≥ 2(a2 + b2 + c2) (CÔ SI) 

<=>a^3/b + b^3/c + c^3/a +ab + bc + ac  ≥ 2(a2 + b2 + c2)

Vì a2 + b2 + c2 ≥ ab + bc + ca => a^3 + b^3 + c^3 ≥ a2 + b2 + c2 ≥ 3 (đpcm).

Bình luận (0)
T . Anhh
25 tháng 6 2023 lúc 21:11

Áp dụng bất đẳng thức cô-si cho hai số dương ta có:

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (1)

\(\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2a+2b+2c\)

\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) (2)

Cộng (1) với (2)

\(3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Ta có: \(\left(\dfrac{a^3}{b}+ab\right)+\left(\dfrac{b^3}{c}+bc\right)+\left(\dfrac{c^3}{a}+ca\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\)

Vì \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\ge3\) (đpcm).

Bình luận (0)
Phùng Công Anh
25 tháng 6 2023 lúc 21:21

Xét BĐT phụ: `a^2+b^2+c^2>=ab+bc+ca(**)`

`BĐT(**)<=>1/2[(a-b)^2+(b-c)^2+(c-a)^2]>=0AAa;b;c` xảy ra dấu "=" khi `a=b=c`

Từ `BĐT(**)` cộng hai vế với `2(ab+bc+ca)` ta có `(a+b+c)^2>=3(ab+bc+ca)<=>(a+b+c)^2/3>=ab+bc+ca`

-----

Ta có `6=a+b+c+ab+bc+ca<=a+b+c+(a+b+c)^2/3=t^2/3+t(t=a+b+c>0)`

`=>t^2/3+t-6>=0=>t>=3` hay `a+b+c>=3`

Áp dụng BĐT Cauchy-Schwarz ta có:

`a^3/b+b^3/c+c^3/a=a^4/(a)+b^4/(bc)+c^4/ca>=(a^2+b^2+c^2)/(ab+bc+ca)>=a^2+b^2+c^2>=(a+b+c)^2/3=3`

Bình luận (0)