Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hello sun
Xem chi tiết
Ngô Bá Hùng
6 tháng 3 2022 lúc 22:03

\(=\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{12+4\sqrt{6}+2+8\sqrt{3}+4\sqrt{2}+4-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{\left(2\sqrt{3}+\sqrt{2}\right)^2+4\left(2\sqrt{3}+\sqrt{2}\right)+4-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{\left(2\sqrt{3}+\sqrt{2}+2\right)^2-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}+\sqrt{2}\right)=20\)

lce-cream
Xem chi tiết
Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:08

Bài 2: 

\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

Ta có: \(P=x^2-2x+2020\)

\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)

\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)

=2026

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:03

Bài 1: 

\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)

\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)

=-6

Minh hue Nguyên
Xem chi tiết
Kayoko
Xem chi tiết
missing you =
1 tháng 7 2021 lúc 14:49

a, đặt \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{2-\sqrt{3}}.\sqrt{2}.\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

\(b,\)

\(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}=\left[\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\right].\sqrt{10-2\sqrt{21}}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}\right)^2-2\sqrt{7.3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)

 

Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 14:35

a) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=3-1=2

b) Ta có: \(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)

\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=4\sqrt{7}\)

thungan nguyen
Xem chi tiết
Nguyễn Khánh Nhi
Xem chi tiết
Trên con đường thành côn...
23 tháng 8 2021 lúc 18:18

undefined

Akai Haruma
23 tháng 8 2021 lúc 18:29

Lời giải:
Gọi biểu thức là A

\(A=\left[3-\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}\right]\left[\frac{\sqrt{5}(\sqrt{2}+\sqrt{3})}{\sqrt{2}+\sqrt{3}}-3\right]\)

\(=[3-\frac{-\sqrt{5}(1-\sqrt{5})}{1-\sqrt{5}}](\sqrt{5}-3)=(3--\sqrt{5})(\sqrt{5}-3)=(3+\sqrt{5})(\sqrt{5}-3)=5-3^2=-4\)

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 22:52

Ta có: \(\left(3-\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{2}+\sqrt{3}}-3\right)\)

\(=\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)\)

=5-9

=-4

vu thi thuy duong
Xem chi tiết
Tran Le Khanh Linh
6 tháng 8 2020 lúc 15:56

\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}=\left|\sqrt{3}-2\right|+\left|1+\sqrt{3}\right|=-\sqrt{3}-2+1+\sqrt{3}=-1\)

(Vì \(\sqrt{3}< 2\)

Khách vãng lai đã xóa
em ơi
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2020 lúc 12:55

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)

\(=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{-\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)

b) Ta có: \(x=3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(P=\dfrac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\), ta được: 

\(P=\dfrac{\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\dfrac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{2}-\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\dfrac{1}{\sqrt{2}-1}\)

\(=\sqrt{2}+1\)

Vậy: Khi \(x=3-2\sqrt{2}\) thì \(P=\sqrt{2}+1\)

Kayoko
Xem chi tiết
An Thy
2 tháng 7 2021 lúc 9:38

a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

 

Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:33

a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)

\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

\(=32+8\sqrt{15}-8\sqrt{15}-30\)

=2