\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
Tính giá trị của biểu thức
\(\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}-2\right)\)
Bài: Tính giá trị các biểu thức sau
a. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
b. \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
tính giá trị biểu thức
\(\left(3-\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\)\(\left(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{2}+\sqrt{3}}-3\right)\)
Tính giá trị biểu thức:
\(M=\sqrt{\left(1-\sqrt{3}\right)^2}-3\sqrt{12}+\dfrac{\sqrt{33}}{\sqrt{11}}+1\)
Cho biểu thức sau:
\(A=\left[\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A khi \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) Tìm các giá trị nguyên của x để A có giá trị nguyên.
Cho biểu thức \(P=x^3+y^3-3\left(x+y\right)+2021\). Tính giá trị biểu thức P với :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
và \(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
Tính giá trị các biểu thức
A = \(\sqrt{\left(5-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
B = \(\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
C = \(\sqrt{\left(3+\sqrt{7}\right)^2}-\sqrt{\left(2-\sqrt{7}\right)^2}\)
D = \(\sqrt{4-2\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
* Cho biểu thức
P= \(\left(\dfrac{a\sqrt{a}+1}{a-1}-\dfrac{a-1}{\sqrt{a}-1}\right):\left(\sqrt{a}-\dfrac{\sqrt{a}}{\sqrt{a}-1}\right)\)
a. Rút gọn biểu thức P
b. Tính giá trị của P khi a = 3-\(2\sqrt{2}\)
Cho biểu thức:
A=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Tìm ĐKXĐ và rút gọn A
b) Tính giá trị của A khi x=\(3-2\sqrt{2}\)
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) với x>0
1.rút gọn P
2.tính giá trị của P khi x=\(\dfrac{2}{2-\sqrt{3}}\)