Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Hoàng
Xem chi tiết
Thư Hoàng
26 tháng 9 2019 lúc 23:14

mình viết nhầm \(x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}+2\left(\sqrt{x}+\sqrt{y}\right)=0\)

Lê Văn Đông
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 9 2016 lúc 17:14

Nếu đề bài cho vô hạn dấu căn thì ta làm như sau :

Nhận xét : A > 0 

Ta có : \(A=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}}\)

\(\Rightarrow A^2=2\sqrt{2\sqrt{2\sqrt{2\sqrt{.....}}}}=2A\)

\(\Rightarrow A^2-2A=0\Rightarrow A\left(A-2\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}A=0\left(\text{loại}\right)\\A=2\left(\text{nhận}\right)\end{array}\right.\)

Vậy A = 2

Lê Văn Đông
Xem chi tiết
Hoàng Lê Bảo Ngọc
1 tháng 9 2016 lúc 17:14

Nếu đề bài cho vô hạn dấu căn thì ta làm như sau :

Nhận xét : A > 0 

Ta có : \(A=\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{...}}}}}\)

\(\Rightarrow A^2=2\sqrt{2\sqrt{2\sqrt{2\sqrt{.....}}}}=2A\)

\(\Rightarrow A^2-2A=0\Rightarrow A\left(A-2\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}A=0\left(\text{loại}\right)\\A=2\left(\text{nhận}\right)\end{array}\right.\)

Vậy A = 2

Vân Nguyễn
Xem chi tiết
Trần Đức Thắng
18 tháng 10 2015 lúc 9:57

\(\frac{1}{2}\cdot2\sqrt{2}+\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{\sqrt{2}}{2}-7\sqrt{2}=\sqrt{2}+\frac{\sqrt{2}}{12}-7\sqrt{2}=-\frac{71}{12}\sqrt{2}\)

Adu Darkwa
Xem chi tiết
Trần Minh Hoàng
26 tháng 5 2021 lúc 19:22

\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).

ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).

Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)

Do đó x > 0 nên y > 0.

Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).

Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).

Dấu "=" xảy ra khi và chỉ khi a = b.

Áp dụng bất đẳng thức trên ta có:

\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)

\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)

Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4) 

Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).

Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)

Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).

Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.

Thay x = y vào (2) ta được:

\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))

PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v

 

 

vũ tiền châu
Xem chi tiết
Tuyển Trần Thị
28 tháng 8 2017 lúc 18:56

\(\left(\sqrt{x^2+16}-5\right)\)\(-3\left(x-3\right)-\left(\sqrt{x^2+7}-4\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x^2+16}-5\right)\left(\sqrt{x^2+16}+5\right)}{\sqrt{x^2+16}+5}\)\(-3\left(x-3\right)-\frac{\left(\sqrt{x^2+7}-4\right)\left(\sqrt{x^2+7}+4\right)}{\sqrt{x^2+7}+4}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x^2+16}+5}-3-\frac{1}{\sqrt{x^2+7}+4}\right)=0\)

ben trong ngoac bn tu xu li nhe

\(\Rightarrow x=3\)

Trần Bảo Ngọc
Xem chi tiết
Nguyễn Phúc Hoàng Long
Xem chi tiết
alibaba nguyễn
13 tháng 9 2018 lúc 9:27

\(\frac{9+4\sqrt{2}}{21}\)

Nguyễn Phúc Hoàng Long
5 tháng 12 2018 lúc 20:51

cho  P = \(\frac{\sqrt{x}+2}{\sqrt{x}+1}\)  , Tìm GTLN của P  

Lê Ng Hải Anh
6 tháng 12 2018 lúc 21:22

ĐKXĐ: \(x\ge0\)

Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}=1+\frac{1}{\sqrt{x}+1}\)

Để P lớn nhất thì: \(\frac{1}{\sqrt{x}+1}\)phải lớn nhất.Hay: \(\sqrt{x}+1\)nhỏ nhất

Theo ĐKXĐ,lại có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)

=>Min \(\sqrt{x}+1\)là 1 tại \(\sqrt{x}=0\Rightarrow x=0\)

=>Max P = \(1+\frac{1}{0+1}=2\)tại x=0

=.= hk tốt!!

nguyễn viết hạ long
Xem chi tiết
Luffy Mũ Rơm
25 tháng 9 2016 lúc 20:56

Tiếc quá 

mình chưa học đến

bik thì giúp cho

Bùi Thị Ngọc Anh
Xem chi tiết
phi thuy linh
7 tháng 12 2016 lúc 12:49

2