1 Phân tích đa thức sau thành phân tử:
a) 3x^2-6x ; b) 18x^2-4x+12
c) 4x^2(2x-y)-12x(2x-y) ; d) 7(x-3y)-2x(3y-x) ; f) 6(x-2y)-3(2y-x)
Bài 1. Phân tích đa thức sau thành nhân tử
\(3x^2+6x+12\)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
a) \(A=x^2-6x+9-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
b) \(B=x^3-3x^2+3x-1+2\left(x^2-1\right)\)
\(=\left(x-1\right)^3+\left(2x+2\right)\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2+2x+2\right]\)
\(=\left(x-1\right).\left(x^2+3\right)\)
a, \(A=\left(x-3\right)^2-9y^2=\left(x-3-3y\right)\left(x-3+3y\right)\)
b, \(B=\left(x-1\right)^3+2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left[\left(x-1\right)^2+2\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-2x+1+2x+2\right)=\left(x-1\right)\left(x^2+3\right)\)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
phân tích đa thức sau thành nhân tử: x^3 - 3x^2 + 6x - 4
\(x^3-3x^2+6x-4\)
\(=x^3-2x^2+4x-x^2+2x-4\)
\(=\left(x^3-2x^2+4x\right)-\left(x^2-2x+4\right)\)
\(=x\left(x^2-2x+4\right)-\left(x^2-2x+4\right)\)
\(=\left(x-1\right)\left(x^2-2x+4\right)\)
x^3 - 3x^2 + 6x - 4
<=> x^3-3x^2+3x-1+3x-3
<=>(x-1)^3+3(x-1)
<=>(x-1)+((x-1)^2+3)
<=>(x-1)+(x^2-2x+4)
phân tích các đa thức sau thành nhân tử
a) 3x^2 -6x + 3 - 3y^2
3(x2-2x+1-y2)
=3((x-1)2-y2)
3.(x-1-y)(x-1+y)
tik nha 3:)
a) 3x^2 -6x + 3 - 3y^2
=3.(x2-2x+1-y2)
=3.[(x-1)2-y2]
=3.(x-1+y)(x-1-y)
Bài 2. Phân tích các đa thức sau thành nhân tử: 3x^3+6x^2+3x-12xy^2
3x3 + 6x2 + 3x - 12xy2
= 3x(x2 + 2x + 1 - 4y2)
= 3x[(x + 1)2 - (2y)2]
= 3x(x + 1 + 2y)(x - 2y + 1)
\(3x^3+6x^2+3x-12xy^2\)
\(=3x\left(x^2+2x+1-4y^2\right)\)
\(=3x\left[\left(x+1\right)^2-\left(2y\right)^2\right]\)
\(=3x\left(x+1-2y\right)\left(x+1+2y\right)\)
Phân tích đa thức sau thành nhân tử A) 12x³-9x2+3x B) x2-y²+6x+9
a ) x=0; x = -(căn bậc hai(7)*i-3)/8;x = (căn bậc hai(7)*i+3)/8;
b ) -(y-x-3)*(y+x+3)
a) \(12x^3-9x^2+3x\)
\(=3x\left(4x^2-3x+1\right)\)
b) \(x^2-y^2+6x+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+y+3\right)\left(x-y+3\right)\)
phân tích đa thức thành nhân tử x^4 + 3x^3 - 6x^2 + 3x + 1
bài 1 phân tích đa thức sau thành nhân tử
a, 12x^3 - 6x^2 + 3x
b, 2/5x^2 + 5X^3 + x^2y
c, 14x^2y - 21xy^2 + 28x^2y^2
a: \(12x^3-6x^2+3x\)
\(=3x\cdot4x^2-3x\cdot2x+3x\cdot1\)
\(=3x\left(4x^2-2x+1\right)\)
b: \(\dfrac{2}{5}x^2+5x^3+x^2y\)
\(=x^2\cdot\dfrac{2}{5}+x^2\cdot5x+x^2\cdot y\)
\(=x^2\left(\dfrac{2}{5}+5x+y\right)\)
c: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
Phân tích đa thức thành nhân tử: \(3x^2-6x+9x^2\)
\(3x^2-6x+9x^2=12x^2-6x=6x\left(2x-1\right)\)