Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô Thu Huyền
Xem chi tiết
Nguyễn Ngọc Trâm
11 tháng 7 2018 lúc 19:35

b) bạn trục mẫu đi nha dựa vào hằng đẳng thức a^2 -b^2=(a-b)(a+b)

rồi bạn tính nói chung mẫu bằng -1

tính cái trên tử kết quả là 4

c) bạn dựa vào câu b .\(\dfrac{1}{\sqrt{3}}=\dfrac{2}{2\sqrt{3}}>\dfrac{2}{\sqrt{3}+\sqrt{4}}\)

từ đó suy ra B > 2A vậy B>8

Trâm Nguyễn Thị Ngọc
Xem chi tiết
Thương Thương
Xem chi tiết
Trần Quốc Lộc
3 tháng 7 2017 lúc 16:04

\(\text{c) }\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)

Ta có : \(6< 6.25\Rightarrow\sqrt{6}< \sqrt{6.25}\Rightarrow\sqrt{6}< 2.5\)

\(12< 12.25\Rightarrow\sqrt{12}< \sqrt{12.25}\Rightarrow\sqrt{12}< 3.5\)

\(20< 20.25\Rightarrow\sqrt{20}< \sqrt{20.25}\Rightarrow\sqrt{20}< 4.5\)

\(30< 30.25\Rightarrow\sqrt{30}< \sqrt{30.25}\Rightarrow\sqrt{30}< 5.5\)

\(42< 42.25\Rightarrow\sqrt{42}< \sqrt{42.25}\Rightarrow\sqrt{42}< 6.5\)

\(50< 56.5\Rightarrow\sqrt{50}< \sqrt{56.25}\Rightarrow\sqrt{50}< 7.5\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 2.5+3.5+4.5+5.5+6.5+7.5\)

\(\Rightarrow\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 30\)

Trần Quốc Lộc
3 tháng 7 2017 lúc 15:19

\(\)\(\text{a) }\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)

Ta có : \(1< 9\Rightarrow\sqrt{1}< \sqrt{9}\Rightarrow\sqrt{1}< 3\)

\(2< 9\Rightarrow\sqrt{2}< \sqrt{9}\Rightarrow\sqrt{2}< 3\)

\(3< 9\Rightarrow\sqrt{3}< \sqrt{9}\Rightarrow\sqrt{3}< 3\)

\(...\)

\(8< 9\Rightarrow\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3+3+...+3_{\left(\text{8 số hạng 3}\right)}\) \(\) \(\)

\(\) \(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 3\cdot8\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{8}< 24\)

\(\text{b) }\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)

Ta có : \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}< \dfrac{1}{\sqrt{100}}\)

\(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}< \dfrac{1}{\sqrt{100}}\)

\(...\)

\(100=100\Rightarrow\sqrt{100}=\sqrt{100}\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}_{\left(\text{100 số hạng}\dfrac{1}{\sqrt{100}}\right)}\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}\cdot100\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>\dfrac{10}{\sqrt{100}}\)

\(\Rightarrow\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\) \(\left(ĐPCM\right)\)

Vậy \(\dfrac{1}{\sqrt{10}}+\dfrac{1}{\sqrt{20}}+...\dfrac{1}{\sqrt{100}}>10\)

\(\)

Trần Quốc Lộc
3 tháng 7 2017 lúc 15:32

Cho phép mình chữa đề câu \(c\) thành như thế này nhé Fairy Tail

\(\text{c) }\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 33\)

Ta có : \(6< 9\Rightarrow\sqrt{6}< \sqrt{9}\Rightarrow\sqrt{6}< 3\)

\(12< 16\Rightarrow\sqrt{12}< \sqrt{16}\Rightarrow\sqrt{12}< 4\)

\(20< 25\Rightarrow\sqrt{20}< \sqrt{25}\Rightarrow\sqrt{20}< 5\)

\(30< 36\Rightarrow\sqrt{30}< \sqrt{36}\Rightarrow\sqrt{30}< 6\)

\(42< 49\Rightarrow\sqrt{42}< \sqrt{49}\Rightarrow\sqrt{42}< 7\)

\(50< 64\Rightarrow\sqrt{50}< \sqrt{64}\Rightarrow\sqrt{50}< 8\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 3+4+5+6+7+8\)

\(\Rightarrow\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 33\) \(\left(ĐPCM\right)\)

Vậy \(\sqrt{6}+\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}+\sqrt{50}< 33\)

Quỳnh Ngân
Xem chi tiết
Akai Haruma
8 tháng 7 2018 lúc 10:50

Lời giải:

a) Ta thấy: \(a+b-2\sqrt{ab}=(\sqrt{a}-\sqrt{b})^2\geq 0, \forall a,b>0\)

\(\Rightarrow a+b\geq 2\sqrt{ab}>0\Rightarrow \frac{1}{a+b}\le \frac{1}{2\sqrt{ab}}\).

Vì $a> b$ nên dấu bằng không xảy ra . Tức \(\frac{1}{a+b}< \frac{1}{2\sqrt{ab}}\)

Ta có đpcm

b)

Áp dụng kết quả phần a:

\(\frac{1}{3}=\frac{1}{1+2}< \frac{1}{2\sqrt{2.1}}\)

\(\frac{1}{5}=\frac{1}{3+2}< \frac{1}{2\sqrt{2.3}}\)

\(\frac{1}{7}=\frac{1}{4+3}< \frac{1}{2\sqrt{4.3}}\)

.....

\(\frac{1}{4021}=\frac{1}{2011+2010}< \frac{1}{2\sqrt{2011.2010}}\)

Do đó:

\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}\)

\(< \frac{\sqrt{2}-\sqrt{1}}{2\sqrt{2.1}}+\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3.2}}+\frac{\sqrt{4}-\sqrt{3}}{2\sqrt{4.3}}+....+\frac{\sqrt{2011}-\sqrt{2010}}{2\sqrt{2011.2010}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{2010}}-\frac{1}{2\sqrt{2011}}\)

\(=\frac{1}{2}-\frac{1}{2\sqrt{2011}}< \frac{1}{2}\) (đpcm)

VUX NA
Xem chi tiết
hoàng long
14 tháng 5 2023 lúc 10:14

bài này khó giúp hộ em với

 

Nguyễn Thanh
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Nguyễn Linh
17 tháng 10 2018 lúc 22:40

Rút gọn biểu thức chứa căn bậc hai

minh nguyen
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2022 lúc 19:30

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

Nguyễn Việt Lâm
19 tháng 4 2022 lúc 21:23

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\Rightarrow xyz=1\)

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{xz\left(xy+y+1\right)}+\dfrac{x}{x\left(yz+z+1\right)}+\dfrac{1}{zx+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x.xyz+xyz+xz}+\dfrac{x}{xyz+xz+1}+\dfrac{1}{xz+x+1}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{xz}{x+1+xz}+\dfrac{x}{1+xz+1}+\dfrac{1}{xz+x+1}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

❤X༙L༙R༙8❤
Xem chi tiết
YangSu
14 tháng 4 2022 lúc 11:30

\(B=\dfrac{3}{\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}+\dfrac{x+5}{x-1}\)

\(=\dfrac{3}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}+\dfrac{x+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)+x+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}-3-\sqrt{x}-1+x+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}+x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}^2+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\left(đpcm\right)\)