Tính \(A=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Thực hiến phép tính :
a, \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c, \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
d, \(\dfrac{3}{2\sqrt{2}-3\sqrt{3}}-\dfrac{3}{2\sqrt{2}+3\sqrt{3}}\)
e, \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
g, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(a,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\dfrac{6}{-1}=-6\\ b,=\dfrac{6\sqrt{2}+8-6\sqrt{2}+8}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}=\dfrac{16}{2}=8\\ c,=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}=\dfrac{16}{2}=8\)
\(d,=\dfrac{6\sqrt{2}+9\sqrt{3}-6\sqrt{2}+9\sqrt{3}}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=\dfrac{18\sqrt{3}}{-19}=\dfrac{-18\sqrt{3}}{19}\\ e,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
Tính:
1) \(\dfrac{3}{1-\sqrt{2}}+\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
2) \(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}+\dfrac{6}{1-\sqrt{5}}\)
3) \(\dfrac{\sqrt{2}+\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}+2}\)
4) \(\dfrac{3+\sqrt{3}}{\sqrt{3}}+\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}\)
5) \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
5: Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
\(=-\sqrt{2}-\sqrt{2}\)
\(=-2\sqrt{2}\)
Tính
a) \(\dfrac{1}{3\sqrt{2}-2\sqrt{3}}-\dfrac{1}{2\sqrt{3}+3\sqrt{2}}\)
b) \(\dfrac{4\sqrt{3}-8}{2\sqrt{3}-4}-\dfrac{1}{\sqrt{5}-2}\)
a) \(\dfrac{1}{3\sqrt{2}-2\sqrt{3}}-\dfrac{1}{2\sqrt{3}+3\sqrt{2}}\)
\(=\dfrac{1}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{6}}-\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{2\sqrt{2}}{\sqrt{6}}\)
\(=\dfrac{2\sqrt{3}}{3}\)
b) \(\dfrac{4\sqrt{3}-8}{2\sqrt{3}-4}-\dfrac{1}{\sqrt{5}-2}\)
\(=\dfrac{4\left(\sqrt{3}-2\right)}{2\left(\sqrt{3}-2\right)}-\dfrac{\sqrt{5}+2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
\(=\dfrac{4}{2}-\dfrac{\sqrt{5}+2}{5-4}\)
\(=2-\sqrt{5}-2\)
\(=-\sqrt{5}\)
Tính:
1) \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{2+\sqrt{5}}\)
2) \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)
3) \(\dfrac{1}{\sqrt{5}-\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
4) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
5) \(-\dfrac{1}{\sqrt{2}-\sqrt{3}}\)\(-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
1: ta có: \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)
\(=3+2\sqrt{2}+\sqrt{5}-2\)
\(=2\sqrt{2}+\sqrt{5}+1\)
2: Ta có: \(\dfrac{1}{3-2\sqrt{2}}-\dfrac{1}{3+2\sqrt{2}}\)
\(=3+2\sqrt{2}-3+2\sqrt{2}\)
\(=4\sqrt{2}\)
Thực hiện các phép tính :
1. \(A=\sqrt{2-\sqrt{3}}\sqrt{2+\sqrt{2-\sqrt{3}}}\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{3}}}}\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2-\sqrt{3}}}}}\)
2. \(B=\left(\dfrac{1}{1+\sqrt{2}}+\dfrac{2}{2+\sqrt{3}}+...+\dfrac{1}{20+\sqrt{21}}\right)\cdot2022\)
Giải chi tiết giúp mình ạ
1:
\(A=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{2-\sqrt{3}}}\cdot\sqrt{2^2-\left(2+\sqrt{2-\sqrt{3}}\right)}\)
\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{2-\sqrt{3}}}\cdot\sqrt{2-\sqrt{2-\sqrt{3}}}\)
\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{4-2+\sqrt{3}}\)
\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)
Tính
a) \(\dfrac{3}{\sqrt{7}-4}+\dfrac{4+\sqrt{7}}{3}\)
b) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\right):\dfrac{1}{2\sqrt{3}}\)
\(a,\dfrac{3}{\sqrt{7}-4}+\dfrac{4+\sqrt{7}}{3}\)
\(=\dfrac{9}{3\left(\sqrt{7}-4\right)}+\dfrac{\left(\sqrt{7}-4\right)\left(\sqrt{7}+4\right)}{3\left(\sqrt{7}-4\right)}\)
\(=\dfrac{9+7-16}{3\left(\sqrt{7}-4\right)}\)
\(=0\)
\(b,\left(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\right):\dfrac{1}{2\sqrt{3}}\)
\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\right]\cdot2\sqrt{3}\)
\(=\left(\sqrt{2}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}\right)\cdot2\sqrt{3}\)
\(=\left(\sqrt{2}+\sqrt{3}-\sqrt{2}\right)\cdot2\sqrt{3}\)
\(=\sqrt{3}\cdot2\sqrt{3}\)
\(=6\)
#\(Toru\)
tính
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-\sqrt{2}}+1\right)\dfrac{1}{2+\sqrt{6}}\)
b) \(\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
a: \(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}+1\right)\cdot\dfrac{1}{2+\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}+1\right)\cdot\dfrac{1}{\sqrt{6}+2}=\dfrac{\sqrt{6}+2}{2\left(\sqrt{6}+2\right)}=\dfrac{1}{2}\)
b: \(=3\sqrt{3}-\dfrac{6}{\sqrt{3}}+1-\sqrt{3}\)
\(=2\sqrt{3}-2\sqrt{3}+1=1\)
Tính:
\(A=\sqrt{20}-2\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(B=4\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{12}+4\sqrt{\dfrac{1}{2}}\)
\(C=\left(3+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(3-\dfrac{3+\sqrt{3}}{1+\sqrt{3}}\right)\)
\(D=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
a) Ta có: \(A=\sqrt{20}-2\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=2\sqrt{5}-6\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=-4\sqrt{5}+15\sqrt{2}\)
b) Ta có: \(B=4\sqrt{\left(\sqrt{3}-1\right)^2}+2\sqrt{12}+4\sqrt{\dfrac{1}{2}}\)
\(=4\left(\sqrt{3}-1\right)+2\cdot2\sqrt{3}+\dfrac{4}{\sqrt{2}}\)
\(=4\sqrt{3}-4+4\sqrt{3}+2\sqrt{2}\)
\(=8\sqrt{3}+2\sqrt{2}-4\)
c) Ta có: \(C=\left(3+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(3-\dfrac{3+\sqrt{3}}{1+\sqrt{3}}\right)\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3
=6
d) Ta có: \(D=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
\(=2-\sqrt{3}+2+\sqrt{3}\)
=4
thực hiện phép tính
A=\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2-\sqrt{2-\sqrt{3}}}}\)
B=\(\dfrac{6+4\sqrt{2}}{\sqrt{2+\sqrt{6+4\sqrt{2}}}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-\sqrt{6-4\sqrt{2}}}\)
a, Sửa đề:
\(A=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{2-2-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{2-2+\sqrt{3}}\)
\(=\dfrac{\sqrt{2}-\sqrt{2+\sqrt{3}}}{-\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{\sqrt{2}+\sqrt{2-\sqrt{3}}-\sqrt{2}+\sqrt{2+\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{2-\sqrt{3}}}{\sqrt{3}}\)
\(=\dfrac{2\sqrt{6-3\sqrt{3}}}{3}\)
Tính:
\(A=\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}\)
\(B=\dfrac{1}{\sqrt{2}-1}+\dfrac{14}{3+\sqrt{2}}\)
\(C=\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(D=\sqrt{\left(1-\sqrt{2}\right)^2}-3\sqrt{18}+4\sqrt{\dfrac{1}{2}}\)