\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\) \(\sqrt{13-\sqrt{160}-\sqrt{53+4\sqrt{90}}}\) \(\left(\sqrt{3+}\sqrt{5}\right)\times\sqrt{7-2\sqrt{10}}\) \(\left(\sqrt{7}-\sqrt{3}\right)\times\sqrt{10+2\sqrt{21}}\)
1) \(\sqrt{46-6\sqrt{5}}\) -\(\sqrt{29-12\sqrt{5}}\)
Hộ mk với pls
\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}.1+1^2}-\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}.3+3^2}\)
\(=\sqrt{\left(3\sqrt{5}-1\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|3\sqrt{5}-1\right|-\left|2\sqrt{5}-3\right|\)
\(=3\sqrt{5}-1-2\sqrt{5}+3=\sqrt{5}+2\)
\(\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{5}\cdot1+1^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^2}\)
= \(\sqrt{\left(3\sqrt{5}-1\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
= /\(3\sqrt{5}-1\)/ - /\(2\sqrt{5}-3\)/
= \(3\sqrt{5}-1-2\sqrt{5}+3\)
= \(\sqrt{5}+2\)
Lời giải:
** Bạn chú ý lần sau ghi đầy đủ yêu cầu đề.
\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\sqrt{45-2\sqrt{45}+1}-\sqrt{20-2\sqrt{20.9}+9}\)
\(=\sqrt{(\sqrt{45}-1)^2}-\sqrt{(\sqrt{20}-\sqrt{9})^2}=|\sqrt{45}-1|-|\sqrt{20}-\sqrt{9}|\)
\(=\sqrt{45}-1-(\sqrt{20}-\sqrt{9})=3\sqrt{5}-1-2\sqrt{5}+3=\sqrt{5}+2\)
Tính giá trị biểu thức:
a)\(\sqrt{6-4\sqrt{2}}+\sqrt{19-6\sqrt{2}}\)
b)\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
c)\(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}\)
a) \(\sqrt{6-4\sqrt{2}}+\sqrt{19-6\sqrt{2}}\)\(=\sqrt{4-4\sqrt{2}+2}+\sqrt{18-2.3\sqrt{2}.1+1}=\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-1\right)^2}\)\(=\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-1\right)^2}\)
= / 2 - \(\sqrt{2}\) / + / 3\(\sqrt{2}\) - 1/
= 2 - \(\sqrt{2}\) + 3\(\sqrt{2}\) - 1
= 2\(\sqrt{2}\) + 1
b) \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
\(=\sqrt{45-2.3.\sqrt{5}+1}-\sqrt{20-2.3.2.\sqrt{5}+9}\)
\(=\sqrt{\left(3\sqrt{5}-1\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
= / 3\(\sqrt{5}\) - 1/ - / 2\(\sqrt{5}\) - 3/
= 3\(\sqrt{5}\) - 1 - 2\(\sqrt{5}\) + 3
= \(\sqrt{5}\) + 2
c) \(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5-2\sqrt{5}.\sqrt{2}+2}-\sqrt{5-2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
= / \(\sqrt{5}\) - \(\sqrt{2}\) / - / \(\sqrt{5}\) - 1 /
= 1 - \(\sqrt{2}\)
a) \(\sqrt{6-4\sqrt{2}}+\sqrt{19-6\sqrt{2}}\)
\(=\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-1\right)^2}\)
\(=2-\sqrt{2}+3\sqrt{2}-1\)
\(=2\sqrt{2}+1\)
Rút gọn
A=\(\sqrt{13+4\sqrt{10}}\)
B= \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
C= \(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{7}}\)
\(A=\sqrt{13+4\sqrt{10}}=\sqrt{13+2\sqrt{40}}=\sqrt{8+2.\sqrt{5}.\sqrt{8}+5}=\sqrt{\left(\sqrt{8}+\sqrt{5}\right)^2}=\sqrt{8}+\sqrt{5}\)
\(B=\sqrt{46-6\sqrt{5}}=\sqrt{46-2\sqrt{45}}=\sqrt{\left(\sqrt{45}-1\right)^2}=\sqrt{45}-1=3\sqrt{5}-1\)
\(C=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{7}}\)
\(C=-\sqrt{3}-\sqrt{2}+\dfrac{\sqrt{5}+\sqrt{3}}{2}-\dfrac{\sqrt{7}+\sqrt{5}}{2}\)
\(C=-\sqrt{3}-\sqrt{2}+\dfrac{\sqrt{3}-\sqrt{7}}{2}\)
\(C=\dfrac{-2\sqrt{3}-2\sqrt{2}+\sqrt{3}-\sqrt{7}}{2}=\dfrac{-\sqrt{3}-2\sqrt{2}-\sqrt{7}}{2}\)
giai giups nhanh nha,RUT GON
A=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
B=\(\sqrt{6.5+\sqrt{12}}+\sqrt{6.5-\sqrt{12}}+2\sqrt{6}\)
C=\(\sqrt{46+\sqrt{6\sqrt{5}}}-\sqrt{29-12\sqrt{5}}\)
D=\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
* \(\sqrt{2}\)A = \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}=\sqrt{7}-1-\left(\sqrt{7}+1\right)+\sqrt{14}=\sqrt{14}-2\)
=> A = \(\sqrt{7}-\sqrt{2}\)
* B là 6,5 hay 6*5 vậy bạn
nếu 6,5 thì : B cũng nhân \(\sqrt{2}\) biểu thức trở thành
\(\sqrt{2}B=\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}+4\sqrt{3}=\sqrt{\left(1+\sqrt{12}\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}+4\sqrt{3}=1+\sqrt{12}+\sqrt{12}-1+4\sqrt{3}=4\sqrt{3}+4\sqrt{3}=8\sqrt{3}\)
=> B = \(\dfrac{8\sqrt{3}}{\sqrt{2}}=4\sqrt{6}\)
nếu 6*5 thì : bạn tách hai căn đầu thành một biểu thức rồi bình phương lên rồi giải , sau đó trục căn , biểu thức luôn dương nhé , mấy bài này nếu không thể tách thì làm cách này cũng được
* C thì mik chỉ bít pt được nhiu đây thôi , bạn thông cảm nhé\(\sqrt{29-6\sqrt{20}}=\sqrt{\left(\sqrt{20}-3\right)^2}=\sqrt{20}+3=2\sqrt{5}-3\)
* D = \(\sqrt{13-2\cdot2\sqrt{2}\cdot\sqrt{5}}-\sqrt{53+2\cdot2\sqrt{2}\cdot3\sqrt{5}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}+3\sqrt{5}\right)^2}=2\sqrt{2}-\sqrt{5}-2\sqrt{2}-3\sqrt{5}=-4\sqrt{5}\)
Câu C có sai đề ko? Tui sửa đây!
Ta có: \(C=\sqrt{46+6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
=> \(C=\sqrt{45+2.3\sqrt{5}+1}-\sqrt{20-2.3.2\sqrt{5}+9}\)
=> \(C=\sqrt{\left(3\sqrt{5}+1\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)
=> \(C=\left|3\sqrt{5}+1\right|-\left|2\sqrt{5}-3\right|\)
=> \(C=3\sqrt{5}+1-2\sqrt{5}+3=4+\sqrt{5}\)
Rút gọn:
a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\).
b) \(\sqrt{\left(1-\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\).
c) \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}.\)
a, \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
= \(\left|\text{√}5-\text{√}2\right|\)-\(\left|\text{√}5+\text{√}2\right|\)
= √5 -√2 - √5 - √2
= -2√2
b, \(\sqrt{\left(1-\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
= \(\left|1-\text{√}2\right|\) - \(\left|2-\text{√}5\right|\)
= √2 - 1 + 2 - √5
= √2-√5 +1
c, \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
=\(\sqrt{\left(1-3\sqrt{5}\right)^2}\) \(-\sqrt{\left(3-2\sqrt{5}\right)^2}\)
= \(\left|1-3\sqrt{5}\right|\) \(-\left|3-2\sqrt{5}\right|\)
= 3√5 - 1 - 2√5 +3
= √5 + 2
Tính
1. \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
2. \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
3. \(\left(\sqrt{2}-\sqrt{9}\right)\left(\sqrt{11+2\sqrt{18}}\right)\)
4. \(\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{12-2\sqrt{35}}\right)\)
1,\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
2, (tương tự ý 1 cũng tách thành hằng đẳng thức \(\sqrt{46-6\sqrt{5}}=\sqrt{\left(3\sqrt{5}-1\right)^2}\)và \(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
3,\(\left(\sqrt{2}-\sqrt{9}\right)\left(\sqrt{\left(3+\sqrt{2}\right)^2}\right)=\left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right)=2-9=-7\)
4, tương tự ý 3
\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{5}-\sqrt{3\sqrt{\left(\sqrt{20-3}\right)^2}}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
tính:giải chi tiết nha
\(\sqrt{29-4\sqrt{7}}\)
\(\sqrt{19+6\sqrt{2}}\)
\(\sqrt{28-6\sqrt{3}}\)
\(\sqrt{46-6\sqrt{5}}\)
\(\sqrt{49+8\sqrt{3}}\)
\(\sqrt{32-8\sqrt{7}}\)
\(\sqrt{29-4\sqrt{7}}=\sqrt{\left(2\sqrt{7}\right)^2-2.2\sqrt{7}.1+1^2}=\sqrt{\left(2\sqrt{7}-1\right)^2}=\left|2\sqrt{7}-1\right|\)
\(=2\sqrt{7}-1\)
\(\sqrt{19+6\sqrt{2}}=\sqrt{\left(3\sqrt{2}\right)^2+2.3\sqrt{2}.1+1^2}=\sqrt{\left(3\sqrt{2}+1\right)^2}=\left|3\sqrt{2}+1\right|\)
\(=3\sqrt{2}+1\)
\(\sqrt{28-6\sqrt{3}}=\sqrt{\left(3\sqrt{3}\right)^2-2.3\sqrt{3}.1+1^2}=\sqrt{\left(3\sqrt{3}-1\right)^2}=\left|3\sqrt{3}-1\right|\)
\(=3\sqrt{3}-1\)
\(\sqrt{46-6\sqrt{5}}=\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}.1+1^2}=\sqrt{\left(3\sqrt{5}-1\right)^2}=\left|3\sqrt{5}-1\right|\)
\(=3\sqrt{5}-1\)
\(\sqrt{49+8\sqrt{3}}=\sqrt{\left(4\sqrt{3}\right)^2+2.4\sqrt{3}.1+1^2}=\sqrt{\left(4\sqrt{3}+1\right)^2}=\left|4\sqrt{3}+1\right|\)
\(=4\sqrt{3}+1\)
\(\sqrt{32-8\sqrt{7}}=\sqrt{\left(2\sqrt{7}\right)^2-2.2\sqrt{7}.2+2^2}=\sqrt{\left(2\sqrt{7}-2\right)^2}=\left|2\sqrt{7}-2\right|\)
\(=2\sqrt{7}-2\)
\(\sqrt{29-4\sqrt{7}}=2\sqrt{7}-1\)
\(\sqrt{19+6\sqrt{2}}=3\sqrt{2}+1\)
\(\sqrt{28-6\sqrt{3}}=3\sqrt{3}-1\)
\(\sqrt{46-6\sqrt{5}}=3\sqrt{5}-1\)
\(\sqrt{49+8\sqrt{3}}=4\sqrt{3}+1\)
\(\sqrt{32-8\sqrt{7}}=2\sqrt{7}-2\)
rút gọn các biểu thức sau:
a,\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
c,\(\sqrt{2+\sqrt{5-\sqrt{13-\sqrt{48}}}}\)
d,\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
b) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{6+2\sqrt{5}-\left(2\sqrt{5}-3\right)}\)
\(=\sqrt{6+3}=3\)
c) Sửa đề: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
Ta có: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)
\(=\sqrt{2+\sqrt{5+2\sqrt{3}-1}}\)
\(=\sqrt{2+\sqrt{3+2\sqrt{3}\cdot1+1}}\)
\(=\sqrt{2+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\sqrt{3+\sqrt{3}}\)
d) Ta có: \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)^2\cdot\left(\sqrt{5}+1\right)+\left(\sqrt{5}+1\right)^2\cdot\left(\sqrt{5}-1\right)}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{5}-1+\sqrt{5}+1\right)}{2\sqrt{2}}\)
\(=\dfrac{4\cdot2\sqrt{5}}{2\sqrt{2}}\)
\(=\dfrac{8\sqrt{5}}{2\sqrt{2}}=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)