C/m: \(\forall\) số nguyên n chẵn , n>4 thì n4 -4n3-4n2-16n\(⋮384\)
CMR:
a) n4-10n3+35n2-50n+7 chia hết cho 24 với n nguyên
b) n4+4n3-8n2-16n+368 chia hết cho 384 với n chẵn
Giúp mình với
a. Đề bài sai, với \(n=1;2;3...\) thì đều sai hết
b. Đề bài sai, với \(n=0;2;4...\) thì vẫn sai hết
e viết nhầm đề
a) n4-10n3+35n2-50n+72 chia hết cho 24 với n nguyên
b) n4+4n3-8n2-16n+768 chia hết cho 384 với n chẵn
Cho A = n4 - 4n3 -4n2 +16n ( ∀ n chẵn và n>4)
CMR: A⋮ 384.
Lời giải:
Ta có:
\(A=n^4-4n^3-4n^2+16n=n^3(n-4)-4n(n-4)\)
\(=(n^3-4n)(n-4)=n(n^2-4)(n-4)=n(n-2)(n+2)(n-4)\)
Vì $n$ chẵn nên đặt $n=2k$ ($k\in\mathbb{N}, k>2$)
Khi đó:
\(A=2k(2k-2)(2k+2)(2k-4)=16(k-2)(k-1)k(k+1)(1)\)
Vì $k-2,k-1,k,k+1$ là 4 số tự nhiên liên tiếp nên trong đó chắc chắn tồn tại một số chia hết cho $4$ và một số chia $4$ dư $2$
\(\Rightarrow (k-2)(k-1)k(k+1)\vdots 8(2)\)
Mặt khác: $k-2, k-1, k$ là 3 số tự nhiên liên tiếp nên chắc chắn trong đó tồn tại một số chia hết cho $3$.
\(\Rightarrow (k-2)(k-1)k\vdots 3\Rightarrow (k-2)(k-1)k(k+1)\vdots 3(3)\)
Từ (2); (3) mà $(3,8)=1$ nên $(k-2)(k-1)k(k+1)\vdots 24$ $(4)$
Từ \((1);(4)\Rightarrow A=16(k-2)(k-1)k(k+1)\vdots (16.24)\)
Hay $A\vdots 384$ (đpcm)
Lời giải:
Ta có:
\(A=n^4-4n^3-4n^2+16n=n^3(n-4)-4n(n-4)\)
\(=(n^3-4n)(n-4)=n(n^2-4)(n-4)=n(n-2)(n+2)(n-4)\)
Vì $n$ chẵn nên đặt $n=2k$ ($k\in\mathbb{N}, k>2$)
Khi đó:
\(A=2k(2k-2)(2k+2)(2k-4)=16(k-2)(k-1)k(k+1)(1)\)
Vì $k-2,k-1,k,k+1$ là 4 số tự nhiên liên tiếp nên trong đó chắc chắn tồn tại một số chia hết cho $4$ và một số chia $4$ dư $2$
\(\Rightarrow (k-2)(k-1)k(k+1)\vdots 8(2)\)
Mặt khác: $k-2, k-1, k$ là 3 số tự nhiên liên tiếp nên chắc chắn trong đó tồn tại một số chia hết cho $3$.
\(\Rightarrow (k-2)(k-1)k\vdots 3\Rightarrow (k-2)(k-1)k(k+1)\vdots 3(3)\)
Từ (2); (3) mà $(3,8)=1$ nên $(k-2)(k-1)k(k+1)\vdots 24$ $(4)$
Từ \((1);(4)\Rightarrow A=16(k-2)(k-1)k(k+1)\vdots (16.24)\)
Hay $A\vdots 384$ (đpcm)
CMR: với mọi số nguỵên n chẵn và lớn hơn 4 thì:
\(n^4-4n^3-4n^2+16n\) chia hết cho 384
Ta phân tích biểu thức đã cho ra nhân tử :
\(A=n^4-4n^3-4n^2+16n\)
\(=\left[n^4-4n^3\right]-\left[4n^2-16n\right]=n^3(n-4)-4n(n-4)\)
\(=n(n-4)\left[n^2-4\right]=n(n-2)(n+2)(n-4)\)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : \(A=(2k+2)(2k)(2k+4)(2k-2)\)
\(=16k(k-1)(k+1)(k+2)=16(k-1)(k)(k+1)(k+2)\)
Ta nhận thấy \((k-1)(k)(k+1)(k+2)\)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
Mình làm gọn 1 xíu nhé
Ta có
\(x^4-4x^3-4x^2+16x=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)
Đây là tích của 4 số chẵn liên tiếp nên sẽ có 2 số chia hết cho 2, 1số chia hết cho 4, 1 số chia hết cho 8. Nên tích này chia hết cho 27.
Trong 3 số chẵn liên tiếp sẽ có 1 số chia hết cho 3
Vì 3 và 27 là nguyên tố cùng nhau nên
Tích chia hết cho 3.27 = 384
CMR : Các số có dạng : n4 -4n3 -4n2 + 16n thì chia hết cho 384 ( với n chẵn và n>4)
Chứng minh rằng với mọi số tự nhiên n chẵn thì: (n4 -4n3 -4n2 +16n)chia hết cho 384
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm
a) Chứng minh rằng với mọi số tự nhiên n chẵn thì: (n4 -4n3 -4n2 +16n)chia hết cho 384;
b) với n là số nguyên dương, rút gọn:
A=(1+1/3)(1+1/8)(1+1/15)....(1+1/(n2+2n))
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Chứng minh số có dạng (n^4-4n^3-4n^2+16n) chia hết cho 384 với n là số tự nhiên chẵn và lớn hơn 4
CMR n4+4n3-4n2-16n chia hết cho 384 với mọi số chẵn n
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
CMR n^4-4.n^3-4n^2+16n chia hết cho 384 với n chẵn, n> hoặc =4
Ta phân tích biểu thức đã cho ra nhân tử :
A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n
=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)
=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)
Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)
=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)
Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24
Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm