Lời giải:
Ta có:
\(A=n^4-4n^3-4n^2+16n=n^3(n-4)-4n(n-4)\)
\(=(n^3-4n)(n-4)=n(n^2-4)(n-4)=n(n-2)(n+2)(n-4)\)
Vì $n$ chẵn nên đặt $n=2k$ ($k\in\mathbb{N}, k>2$)
Khi đó:
\(A=2k(2k-2)(2k+2)(2k-4)=16(k-2)(k-1)k(k+1)(1)\)
Vì $k-2,k-1,k,k+1$ là 4 số tự nhiên liên tiếp nên trong đó chắc chắn tồn tại một số chia hết cho $4$ và một số chia $4$ dư $2$
\(\Rightarrow (k-2)(k-1)k(k+1)\vdots 8(2)\)
Mặt khác: $k-2, k-1, k$ là 3 số tự nhiên liên tiếp nên chắc chắn trong đó tồn tại một số chia hết cho $3$.
\(\Rightarrow (k-2)(k-1)k\vdots 3\Rightarrow (k-2)(k-1)k(k+1)\vdots 3(3)\)
Từ (2); (3) mà $(3,8)=1$ nên $(k-2)(k-1)k(k+1)\vdots 24$ $(4)$
Từ \((1);(4)\Rightarrow A=16(k-2)(k-1)k(k+1)\vdots (16.24)\)
Hay $A\vdots 384$ (đpcm)
Lời giải:
Ta có:
\(A=n^4-4n^3-4n^2+16n=n^3(n-4)-4n(n-4)\)
\(=(n^3-4n)(n-4)=n(n^2-4)(n-4)=n(n-2)(n+2)(n-4)\)
Vì $n$ chẵn nên đặt $n=2k$ ($k\in\mathbb{N}, k>2$)
Khi đó:
\(A=2k(2k-2)(2k+2)(2k-4)=16(k-2)(k-1)k(k+1)(1)\)
Vì $k-2,k-1,k,k+1$ là 4 số tự nhiên liên tiếp nên trong đó chắc chắn tồn tại một số chia hết cho $4$ và một số chia $4$ dư $2$
\(\Rightarrow (k-2)(k-1)k(k+1)\vdots 8(2)\)
Mặt khác: $k-2, k-1, k$ là 3 số tự nhiên liên tiếp nên chắc chắn trong đó tồn tại một số chia hết cho $3$.
\(\Rightarrow (k-2)(k-1)k\vdots 3\Rightarrow (k-2)(k-1)k(k+1)\vdots 3(3)\)
Từ (2); (3) mà $(3,8)=1$ nên $(k-2)(k-1)k(k+1)\vdots 24$ $(4)$
Từ \((1);(4)\Rightarrow A=16(k-2)(k-1)k(k+1)\vdots (16.24)\)
Hay $A\vdots 384$ (đpcm)