cho x,y,z thỏa:
x(x-1)+y(y-1)+z(z-1)\(\le\dfrac{4}{3}\)
cmr: x+y+z \(\le4\)
Cho x,y,z>0 thỏa mãn x+y+z=1.CMR:\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
từ đề bài ta có bất đẳng thức cần chứng minh tương đương:
\(3+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)
<=>\(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
ta có \(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{3}{4}+\dfrac{z+y}{4x}+\dfrac{x+z}{4y}+\dfrac{x+y}{4z}=\dfrac{3}{4}+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(đpcm\right)\)Dấu "=" xảy ra khi x=y=z=\(\dfrac{1}{3}\)
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\).CMR \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3}{2}\sqrt{xyz}\)
Giả thiết thiếu rồi em, chỗ \(\dfrac{1}{x+1}+...\) thiếu đoạn sau nữa
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}=1\\\).CMR
\(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\dfrac{3}{2}\sqrt{xyz}\)
Đặt \(\left(\dfrac{1}{\sqrt{x}};\dfrac{1}{\sqrt{y}};\dfrac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}=1\)
Ta cần chứng minh: \(ab+bc+ca\le\dfrac{3}{2}\)
Thật vậy, ta có:
\(1=\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)
\(\Rightarrow a^2+b^2+c^2+3\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le\dfrac{3}{2}\) (đpcm)
cho \(x,y,z>0\) thỏa mãn\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=1\).CMR
\(xy+yz+zx\le\dfrac{3}{4}\)
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}.\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(\ge\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)}.\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\sqrt{3\left(xy+yz+zx\right)^3}\)
\(\Rightarrow3\left(xy+yz+zx\right)^3\le\left(\dfrac{9}{8}\right)^2\)
\(\Rightarrow\left(xy+yz+zx\right)^3\le\dfrac{27}{64}\)
\(\Rightarrow xy+yz+zx\le\dfrac{3}{4}\)
Cho x, y, z thỏa mãn \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{3}{4}\)
Chứng minh rằng: \(x+y+z\le4\)
Hix vừa làm xong
Link nè bn tham khảo nhé:
Câu hỏi của Phan Mạnh Tuấn - Toán lớp 9 - Học toán với OnlineMath
\(CMR:x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{4}{3}\)
\(CMR:-1\le x+y+z\le4\)
ta co 3(x2+y2+z2)-3(x+y+z)<=4
de dang chung minh bdt 3(x2+y2+z2)>=(x+y+z)2
ap dung bat dang thuc ta co
3(x2+y2+z2)-(x+y+z)>=(x+y+z)2-3(x+y+z)
=>(x+y+z)2-3(x+y+z)-4<=0
=>(x+y+z+1)(x+y+z-4)<=0
=>-1<=x+y+z=<4 (dpcm)
ta co 3(x2+y2+z2)-3(x+y+z)<=4
de dang chung minh bdt 3(x2+y2+z2)>=(x+y+z)2
ap dung bat dang thuc ta co
3(x2+y2+z2)-(x+y+z)>=(x+y+z)2-3(x+y+z)
=>(x+y+z)2-3(x+y+z)-4<=0
=>(x+y+z+1)(x+y+z-4)<=0
=>-1<=x+y+z=<4 (dpcm)
Cho \(x,y,z\ge0,x+y+z=2\)
CMR: \(x^2y+y^2z+z^2x\le x^3+y^3+z^3\le1+\dfrac{1}{2}\left(x^4+y^4+z^4\right)\)
BĐT bên trái rất đơn giản, chỉ cần áp dụng:
\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được
Ta chứng minh BĐT bên phải:
\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)
\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)
Thật vậy, ta có:
\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)
\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)
\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)
Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)
Cho x, y, z > 0 thỏa mãn : x + y + z = xyz. CMR :
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)