Rút gọn các biểu thức:
a)\(\sqrt{16a^4}+6a^2\) với a bất kì
b)\(3\sqrt{9a^6}-6a^3\) với a bất kì
Bài 7: Rút Gọn Các Biểu Thức Sau
a. 5\(\sqrt{25^2}\) - 25x Với X<O
B \(\sqrt{49a^2}\) + 3a Với a \(\ge\) 0
C \(\sqrt{16a^4}\) + 6a\(^2\) Với a Bất Kì
d 3\(\sqrt{9a^6}\) - 6a\(^3\) với a bất kì
e 3\(\sqrt{9a^6}\) - 6a\(^3\) Với a\(\ge\) 0
f \(\sqrt{16a^{10}}\) + 6a\(^5\) với a \(\le0\)
b: B=căn 49a^2+3a
=|7a|+3a
=7a+3a(a>=0)
=10a
c: C=căn16a^4+6a^2
=4a^2+6a^2
=10a^2
d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)
TH1: a>=0
D=6a^3-6a^3=0
TH2: a<0
D=-6a^3-6a^3=-12a^3
e: \(E=3\sqrt{9a^6}-6a^3\)
\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)
=3*3a^3-6a^3(a>=0)
=3a^3
f: \(F=\sqrt{16a^{10}}+6a^5\)
\(=\sqrt{\left(4a^5\right)^2}+6a^5\)
=-4a^5+6a^5(a<=0)
=2a^5
bài 1 Rút gọn biểu thức:
a) 5\(\sqrt{25a^2}-25\) với a<0
b)\(\sqrt{49a^2}+3a\) với a<0
c)3\(\sqrt{9a^6}-6a^3\) với a bất kì
a) \(5\sqrt{25a^2}-25=25\left|a\right|-25==-25a-25\left(a< 0\right)\)
b) \(\sqrt{49a^2}+3a=7\left|a\right|+3a=-7a+3a\left(a< 0\right)=-4a\)
c) \(3\sqrt{9a^6}=9\left|a^3\right|-6a^3\)
Xét \(a\ge0\Rightarrow9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)
Xét \(a< 0\Rightarrow9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)
a) 5\(\sqrt{25a^2}\) - 25 với a < 0
= 5\(\sqrt{\left(5a\right)^2}\) - 25
= 5.\(\left|5a\right|\) - 25
= 5.-(5a) - 25
= -25a - 25 Vì a < 0
b) \(\sqrt{49a^2}\) + 3a với a < 0
= \(\sqrt{\left(7a\right)^2}\) + 3a
= \(\left|7a\right|\) + 3a
= -7a + 3a Vì a < 0
= -4a
c) 3\(\sqrt{9a^6}\) - 6a3 với a bất kì
= 3\(\sqrt{\left(3a^3\right)^2}\) - 6a3
= 3\(\left|3a^3\right|\) - 6a3
= 9a3 - 6a3
= 3a3
Chúc bạn học tốt
a) \(5\sqrt{25a^2}-25=-25a-25\)
b) \(\sqrt{49a^2}+3a=-7a+3a=-4a\)
c) \(3\sqrt{9a^6}-6a^3=6a^3-6a^3=0\)
Rút gọn biểu thức
a)\(5\sqrt{25a^2}-25a\) với a<0
b)\(\sqrt{49a^2}+3a\) với \(a\ge0\)
c)\(\sqrt{16a^4}+6a^2\) với a bất kì
d)\(3\sqrt{9a^6}-6a^3\) với a bất kì
rút gọn các biểu thức sau:
\(\sqrt{16a^4}+6a^2\) với a bất kì
\(3\sqrt{9a^6}-6a^3\) với a bất kì
\(\sqrt{16a^4}+6a^2=\sqrt{16\left(a^2\right)^2}+6a^2=4a^2+6a^2=10a^2\)
(vì a2 ≥ 0 ∀ a)
\(3\sqrt{9a^6}-6a^3=3\sqrt{9\left(a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)
(vì a3 có thể là số âm, dương hoặc bằng 0 tùy thuộc vào giá trị của a nên đặt trong dấu GTTĐ)
Có 2 trường hợp:
+ T/h 1: a ≥ 0 ta có \(9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)
+ T/h 2: a < 0 ta có \(9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)
( dấu trừ ở trước số 9a3 là kí hiệu số đối nha)
+ \(\sqrt{16a^4}+6a^2\)
\(=4a^2+6a^2=10a^2\)
+ \(3\sqrt{9a^6}-6a^3\)
\(=3\left|3a^3\right|-6a^3\)
\(=\left\{{}\begin{matrix}9a^3-6a^3=3a^3vớia\ge0\\-9a^3-6a^3=-15a^3vớia< 0\end{matrix}\right.\)
Rút gọn các biểu thức sau : a) \(5\sqrt{25a^2}-25a\) với a < 0
b) \(\sqrt{49a^2}+3a\) với a \(\ge\) 0
c) \(\sqrt{16a^4}+6a^2\) với a bất kì
d) \(3\sqrt{9a^6}-6a^3\) với a bất kì
rút gọn các biểu thức
a,\(5\sqrt{25a^2}-25a\) với a<0
b,\(\sqrt{49a^2}+3a\) với a > hoạc = 0
c,\(\sqrt{16a^4}+6a^2\) với a bất kì
d, \(x^2-2\sqrt{23}.x+23\)
\(5\sqrt{25a^2}-25a\) với a<0
\(\sqrt{16a^4}+6a^3\) với a bất kì
\(3\sqrt{9a}^6-6a^3\) với a bất kì
\(4x-\sqrt{x^2-4x+4}\) với x _< (bé hơn hoặc bằng) 2
mọi người giúp em với ạ , em cảm ơn :)
Bài 2: Rút gọn biểu thức
1) 2\(\sqrt{a^{2^{ }}}\) với a \(\ge\) 0
2) 3\(\sqrt{\left(a-2\right)^{2_{ }}}\) với a<2
3) \(\sqrt{81a^{4^{ }}}\) + 3a2
4) \(\sqrt{64a^{2^{ }}}+2a\) (a\(\ge\) 0)
5) 3\(\sqrt{9a^{6^{ }}}-6a^3\) ( a bất kỳ)
6) \(\sqrt{a^{2^{ }}+6a+9}+\sqrt{a^{2^{ }}-6a+9}\) ( a bất kì)
7) \(\dfrac{\sqrt{1-2x+x^2}}{x-1}\)
8) A= \(\dfrac{\sqrt{9x^{2^{ }}-6x+1}}{9x^{2^{ }}-1}\)
9) B= 4-x- \(\sqrt{4-4x+x^2}\)
10) C= \(\sqrt{4x^{2^{ }}-4x+1}-\sqrt{4x^{2^{ }}+4x+1}\)
Bài 2: Rút gọn biểu thức
1) 2\(\sqrt{a^{2^{ }}}\) với a \(\ge\) 0
2) 3\(\sqrt{\left(a-2\right)^{2_{ }}}\) với a<2
3) \(\sqrt{81a^{4^{ }}}\) + 3a2
4) \(\sqrt{64a^{2^{ }}}+2a\) (a\(\ge\) 0)
5) 3\(\sqrt{9a^{6^{ }}}-6a^3\) ( a bất kỳ)
6) \(\sqrt{a^{2^{ }}+6a+9}+\sqrt{a^{2^{ }}-6a+9}\) ( a bất kì)
7) \(\dfrac{\sqrt{1-2x+x^2}}{x-1}\)
8) A= \(\dfrac{\sqrt{9x^{2^{ }}-6x+1}}{9x^{2^{ }}-1}\)
9) B= 4-x- \(\sqrt{4-4x+x^2}\)
10) C= \(\sqrt{4x^{2^{ }}-4x+1}-\sqrt{4x^{2^{ }}+4x+1}\)
Làm nốt ::v
\(2.3\sqrt{\left(a-2\right)^2}=3\text{ |}a-2\text{ |}=3\left(a-2\right)\left(a< 2\right)\)
\(3.\sqrt{81a^4}+3a^2=\sqrt{3^4.a^4}+3a^2=9a^2+3a^2=12a^2\)
\(4.\sqrt{64a^2}+2a=\text{ |}8a\text{ |}+2a=8a+2a=10a\left(a>=0\right)\)
\(6.\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}=\text{ |}a+3\text{ |}+\text{ |}a-3\text{ |}\)
\(7.\dfrac{\sqrt{1-2x+x^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\text{ |}x-1\text{ |}}{x-1}\)
\(8.\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{\text{ |}3x-1\text{ |}}{\left(3x-1\right)\left(3x+1\right)}\)
\(9.4-x-\sqrt{4-4x+x^2}=4-x-\sqrt{\left(x-2\right)^2}=4-x-\text{ |}x-2\text{ |}\)
Mình làm ba câu mẫu, bạn theo đó mà làm các câu còn lại.
Giải:
1) \(2\sqrt{a^2}\)
\(=2\left|a\right|\)
\(=2a\left(a\ge0\right)\)
Vậy ...
5) \(3\sqrt{9a^6}-6a^3\)
\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)
\(=3.3a^3-6a^3\)
\(=9a^3-6a^3\)
\(=3a^3\)
Vậy ...
10) \(C=\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
\(\Leftrightarrow C=\sqrt{\left(2x-1\right)^2}-\sqrt{\left(2x+1\right)^2}\)
\(\Leftrightarrow C=2x-1^2-\left(2x+1^2\right)\)
\(\Leftrightarrow C=2x-1-2x-1\)
\(\Leftrightarrow C=-2\)
Vậy ...