a) \(\sqrt{16a^4}+6a^2\) =\(\sqrt{\left(4a^2\right)^2}+6a^2\) = 4a2+6a2 = 10a2
b) \(3\sqrt{9a^6}-6a^3\) = \(3\sqrt{3a^3}^2-6a^3\) = 9a3-6a3 = 3a3
a) \(\sqrt{16a^4}+6a^2\) =\(\sqrt{\left(4a^2\right)^2}+6a^2\) = 4a2+6a2 = 10a2
b) \(3\sqrt{9a^6}-6a^3\) = \(3\sqrt{3a^3}^2-6a^3\) = 9a3-6a3 = 3a3
Bài 1: Rút gọn
\(3\sqrt{9a^6}-6a^3\) (với mọi a)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}\) (Với \(\dfrac{1}{3}\) < x ≤ 1 )
\(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) (với 1<x<2)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) (với x ≥4)
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
Rút gọn:
\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\)
Rút gọn:
\(A=\sqrt{\left(a-3\right)^2}-3a\) với a < 3
\(B=4a+3-\sqrt{\left(2a-1\right)^2}\) với a > 1/2
\(C=\dfrac{4}{a^2-4}\sqrt{\left(a-2\right)^2}\) với a < 2
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{a^2+6a+9}{16}}\) với a < -3
Rút gọn rồi tính các biểu thức sau:
a)\(A=\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\) với \(a^2=6-3\sqrt{3};b^2=2+\sqrt{3}\)
b)\(B=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)với \(x=1+\sqrt{5}\)
Cho biểu thức H = \(\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right)\): \(\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\) với a \(\ge\) 0, a \(\ne\) 1, a \(\ne\) 9
a) Rút gọn biểu thức H
b) Tìm a khi H = 2023
bài 38 :rút gọn các biểu thức
a)2ab\(\sqrt{\dfrac{225}{a^2b^4}}\)(với a<0,b\(\ne\)0) b)\(\sqrt{\dfrac{20\left(a-1\right)^2}{45}}\)(với a<1)
c)\(\sqrt{\dfrac{9a^2-6a+1}{b^2}}\)(với b>0,a>\(\dfrac{1}{3}\)) d)\(\left(a-2\right).\sqrt{\dfrac{a^2}{a^2-4a+4}}\) (với 0<a<2)
Cho biểu thức:
\(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
với x > 0 , x ≠ 4 , x ≠ 9
a. Rút gọn B
b. Tìm B khi x = 7 - 4 \(\sqrt{3}\)
Cho biểu thức
\(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
với x > 0 và x ≠ 9
a. Rút gọn A
b. Tìm x để A > 1/2