6x - 8y/x+y+3y-2x/5x-y biết 3x2-65xy+16y2=0. y#-x,y#5x
a, \(A=-x^2+4xy^2-2xz+3y^2\)
b, \(B=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)
c, \(A=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)
Tính : x3-6x2y+12xy2-8y3 biết 2x-3y=0 và x-2y+1=0
phân tích đa thức thành nhân tử
\(a)3x^3+6x^2y \)
\(b)2x^3-6x^2\)
\(c)18x^2-20xy\)
\(d)xy+y^2-x-y \)
\(e)(x^2y^2-8)^2-1\)
\(f)x^2-7x-8\)
\(g)10x^2(2x-y)+6xy(y-2x)\)
\(h)x^2-2x+1-y^2\)
\(i)2x(x+2)+x^2(-x-2)\)
\(k)-9+6x-x^2\)
\(l)8xy-2x^2-8y^2\)
\(m)3x^2+5x-3y^2-5y\)
a) 3x³ + 6x²y
= 3x².(x + 2y)
b) 2x³ - 6x²
= 2x².(x - 2)
c) 18x² - 20xy
= 2x.(9x - 10y)
d) xy + y² - x - y
= (xy + y²) - (x + y)
= y(x + y) - (x + y)
= (x + y)(y - 1)
e) (x²y² - 8)² - 1
= (x²y² - 8 - 1)(x²y² - 8 + 1)
= (x²y² - 9)(x²y² - 7)
= (xy - 3)(xy + 3)(x²y² - 7)
f) x² - 7x - 8
= x² - 8x + x - 8
= (x² - 8x) + (x - 8)
= x(x - 8) + (x - 8)
= (x - 8)(x + 1)
a: \(3x^3+6x^2y\)
\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)
b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)
c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)
d: \(xy+y^2-x-y\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
e: \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)
\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)
f: \(x^2-7x-8\)
\(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)
g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
h: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)
\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)
k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)
\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)
l: \(-2x^2+8xy-8y^2\)
\(=-2\left(x^2-4xy+4y^2\right)\)
\(=-2\left(x-2y\right)^2\)
m: \(3x^2+5x-3y^2-5y\)
\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y+5\right)\)
g) 10x²(2x - y) + 6xy(y - 2x)
= 10x²(2x - y) - 6xy(2x - y)
= 2x(2x - y)(5x - 3y)
h) x² - 2x + 1 - y²
= (x² - 2x + 1) - y²
= (x - 1)² - y²
= (x - y - 1)(x + y - 1)
i) 2x(x + 2) + x² (-x - 2)
= 2x(x + 2) - x²(x + 2)
= x(x + 2)(2 - x)
k) -9 + 6x - x²
= -(x² - 6x + 9)
= -(x - 3)²
l) 8xy - 2x² - 8y²
= -2(x² - 4xy + 4y²)
= -2(x - 2y)²
m) 3x² + 5x - 3y² - 5y
= (3x² - 3y²) + (5x - 5y)
= 3(x² - y²) + 5(x - y)
= 3(x - y)(x + y) + 5(x - y)
= (x - y)[3(x + y) + 5]
= (x - y)(3x + 3y + 5)
tìm các số nguyên x,y thõa mãn đẳng thức 5x^2+3y^2+4xy-2x+8y+8<0
Đặt \(5x^2+3y^2+4xy-2x+8y+8=A\)
ta có \(5x^2+3y^2+4xy-2x+8y+8< 0\)
<=>\(\left(2x+y\right)^2+\left(x-1\right)^2+2\left(y+2\right)^2< 1\)
vì x,y là số nguyên nên A cũng nguyên
mà A<1 nên A=0 (vì A là toonngr của 3 số chính phương)
=>\(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\)
bạn tự giải nha
c1,tìm x,y số nguyên biết 2xy-x-y=2
c2,tìm đa thức M biết rằng M+(5x^2-2xy)=6x^2+9xy-y^2 tính giá trị của M khi x, y thỏa mãn (2x-5)^2018+(3y+4)^2<0 hoặc =0
Tìm các số x, y, z, biết rằng: a. \(\frac{1+4y}{13}=\frac{1+6y}{19}=\frac{1+8y}{5x}\)
b.\(\frac{2x+1}{5}=\frac{y-2}{7}=\frac{2x+3y-1}{6x}\)
c.\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{y+x-3}{z}=\frac{1}{x+y+z}\)
a) Ta có: \(\frac{1+4y}{13}=\frac{1+6y}{19}.\)
\(\Rightarrow\left(1+4y\right).19=\left(1+6y\right).13\)
\(\Rightarrow19+76y=13+78y\)
\(\Rightarrow19-13=78y-76y\)
\(\Rightarrow6=2y\)
\(\Rightarrow y=6:2\)
\(\Rightarrow y=3.\)
Thay \(y=3\) vào đề bài ta được:
\(\frac{1+4.3}{13}=\frac{1+8.3}{5x}\)
\(\Rightarrow\frac{1+12}{13}=\frac{1+24}{5x}.\)
\(\Rightarrow\frac{13}{13}=\frac{25}{5x}\)
\(\Rightarrow1=\frac{25}{5x}\)
\(\Rightarrow5x=25:1\)
\(\Rightarrow5x=25\)
\(\Rightarrow x=25:5\)
\(\Rightarrow x=5\)
Vậy \(\left(x;y\right)=\left(5;3\right).\)
Chúc bạn học tốt!
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2018+(3y+4)^2020 <hoặc=0
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2020+(3y+4)^2022 <hoặc=0
M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2
(2x-5)^2020+(3y+4)^2022<=0
=>x=5/2 và y=-4/3
M=25/4+11*5/2*(-4/3)-16/9=-1159/36
Phân tích đa thức sau thành nhân tử
9y^3-y
8y^3-2y(1-2y)^2
2x^3-8x^2+8x
2x^4-6x^3+6x^2-2x
x^3-6x^2y+9xy^2-x
5x^4-15x^3y+15x^2y^2-5xy^3-5x
3x^2+3xy-x-y
6xy-x^2-y^2+25
7m-7n-m^2+2mn-n^2
3xy-3xz+2xyz-xy^2-xz^2
a)\(9y^3-y\)
\(=y\left(9y^2-1\right)\)
\(=y\left(3y-1\right)\left(3y+1\right)\)
\(9y^3-y=y\left(9y^2-1\right)=y\left(3y+1\right)\left(3y-1\right)\)
\(8y^3-2y\left(1-2y\right)^2=2y\left[\left(2y\right)^2-\left(1-2y\right)^2\right]=2y\left(4y-1\right)\)
\(2x^3-8x^2+8x=2x\left(x^2-4x+4\right)=2x\left(x-2\right)^2\)
\(2x^4-6x^3+6x^2-2x=2x\left(x^3-3x^2+3x-1\right)=2x\left(x-1\right)^3\)\(x^3-8x^2+8x=x\left(x^2-8x+8\right)\)
\(5x^4-15x^3y+15x^2y^2-5xy^3-5x=5x\left(x^3-3x^2y+3xy^2-y^3-1\right)=5x\left[\left(x-y\right)^3-1\right]=5x\left(x-y-1\right)\left(x^2-2xy+y^2+x-y+1\right)\)