tim GTNN cua bt
a) \(x^4+x^2+2\)
b)\(3x^2-21x+15\)
c)\(x^2-4xy+5y^2+10x-22y+28\)
1 tim gtln hoac gtnn cua bt
B=x2-4xy+5y2+10x-22y+28
GTNN nak !!!
\(B=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)
\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(B_{min}=2\) tại \(x=-3;y=1\)
Tim GTNN của biểu thưc
`C=x^2-4xy+5y^2 +10x -22y+28`
Tìm GTNN
a, A = x^2 -10x + 27
b, B = 4x^2 + 4x + 20
c, C = x^2 -4xy +5y^2 + 10x - 22y +28
a) A = x^2 -10x + 27
Ta có:
A = x^2 - 10x + 27
= x^2 - 2.x.5 + 5^2 + 2
= (x-5)^2 + 2
Do (x-5)^2 > 0 ( với mọi x )
=> (x-5)^2 + 2 > 2 (với mọi x)
=> Amin = 2
Dấu "=" xãy ra khi và chỉ khi x-5=0 <=> x=5
Vậy : GTNN của A bằng 2 tại x = 5
b, B = 4x^2 + 4x + 20
Ta có :
B = 4x^2 + 4x + 20
= (2x)^2 + 2.2x.1 + 1^2 + 19
= (2x+1)^2 + 19
Do (2x+1)^2 > 0 ( với mọi x)
=> (2x+1)^2 + 19 > 19 (với mọi x)
=> B > 19 (mọi x)
=> Bmin = 19
Dấu "=" xãy ra <=> 2x+1 = 0
<=> x = -1/2
Vậy : GTNN của B =19 tại x = -1/2
tính gtnn của biểu thức c= x^2-4xy +5y^2+10x-22y+28
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+4y^2+25-10y+y^2-2y+3\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Vậy \(GTNN=2\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Tìm GTNN của:
\(x^2 -4xy +5y^2 +10x -22y +28\)
\(=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ =\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\\ =\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy GTNN của biểu thức là 2
Tìm GTNN của biểu thức sau: a) A= x^2-2x+y^2+4y+8 b) B= x^2-4x+y^2-8y+6 c) C= x^-4xy+5y^2+10x-22y+28
a: \(A=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\)
Dấu '=' xảy ra khi x=1 và y=-2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)
Dấu '=' xảy ra khi x=2 và y=4
Tìm GTNN G=x2-4xy+5y2+10x-22y+28
\(G=x^2-4xy+5y^2+10x-22y+28.\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Do \(\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0\forall x\)nên \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Vậy \(MinG=2\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
\(G=x^2-4xy+5y^2+10x-22y+28\)
\(G=x^2-2x\left(2y-5\right)+5y^2-22y+28\)
\(G=x^2-2x\left(2y-5\right)+\left(4y^2-20y+25\right)+\left(y^2-2y+1\right)+2\)
\(G=x^2-2x\left(2y-5\right)+\left(2x-5\right)^2+\left(y-1\right)^2+2\)
\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu "=" xảy ra khi x=-3;y=1
tìm gtnn của:
B= x2-4xy+5y2+10x-22y+28
\(B=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(B_{min}=2\) tại \(x=-3;y=1\)
Tìm GTNN của biểu thức: C =x2 -4xy +5y2 +10x -22y +28
C = x2 - 4xy + 5y2 + 10x - 22y + 28
= (x2 - 4xy + 4y2) + (10x - 20y) + (y2 - 2y) + 28
= (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2
= (x - 2y)2 + 2.(x - 2y).5 + 52 + (y - 1)2 + 2
= (x - 2y + 5)2 + (y - 1)2 + 2
Vì \(\left(x-2y+5\right)^2\ge0\forall x;y\); \(\left(y-1\right)^2\ge0\forall y\) nên \(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x;y\)
hay \(C\ge2\forall x;y\)
Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy ...