Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mai Hương
Xem chi tiết
kudo shinichi
9 tháng 6 2019 lúc 15:55

\(2mx-5=-x+6m-2\)

\(\Leftrightarrow2m\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(2m+1\right)=0\)

=> phương trình luôn có một nghiệm là x=3

l҉o҉n҉g҉ d҉z҉
24 tháng 8 2020 lúc 15:31

2mx - 5 = -x + 6m - 2

<=> 2mx - 5 + x - 6m + 2 = 0

<=> 2mx + x - 6m - 3 = 0

<=> 2m( x - 3 ) + 1( x - 3 ) = 0

<=> ( 2m + 1 )( x - 3 ) = 0

=> Phương trình có một nghiệm x = 3 không phụ thuộc vào m ( đpcm )

Khách vãng lai đã xóa
Võ Thúy Hằng
Xem chi tiết
Lightning Farron
2 tháng 6 2016 lúc 19:38

dễ ẹc

\(x\left(3x+12\right)-\left(7x-20\right)+x^2\left(2x-3\right)-x\left(2x^2+5\right)\)

\(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x\)

\(=\left(3x^2-3x^2\right)+\left(12x-7x-5x\right)+\left(2x^3-2x^3\right)+20\)

\(=0+0+0+20\)

\(=20\)

Anh Quynh
Xem chi tiết
Nguyễn Huy Tú
4 tháng 3 2022 lúc 7:22

a, Thay m = 1 ta đc

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm pb khi delta' > 0 

\(m-2\ne0\Leftrightarrow m\ne2\)

c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)

Nguyễn Việt Lâm
4 tháng 3 2022 lúc 8:59

d. 

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

Tòng Thị Như Quỳnh
Xem chi tiết
Hoàng Minh Quân
Xem chi tiết
hello hello
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 2 2021 lúc 20:26

- Xét phương trình đề cho có :

\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)

\(=m^2-3m+3\ge\dfrac{3}{4}>0\)

- Phương trình luôn có hai nghiệm phân biệt với mọi m .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)

Khiêm Nguyễn Gia
Xem chi tiết
Dang Tung
16 tháng 11 2023 lúc 16:52

pt : \(x^2-\left(2m+1\right)x+m^2+m-1=0\)

\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(m^2+m-1\right)\\ =4m^2+4m+1-4m^2-4m+4=5>0\)

=> pt luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Vi ét :

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1.x_2=m^2+m-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=2m+1\\x_1.x_2=m^2+m-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4\left(x_1+x_2\right)^2=4m^2+4m+1\\4x_1x_2=4m^2+4m-4\end{matrix}\right.\)

\(\Rightarrow4\left(x_1+x_2\right)^2-4x_1x_2=5\) ( Không phụ thuộc vào m - DPCM )

Khiêm Nguyễn Gia
19 tháng 11 2023 lúc 20:14

Hệ thức viet này có vẻ không đúng lắm

Rin Rin cute
Xem chi tiết
Lương Đại
3 tháng 4 2023 lúc 22:58

\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)

a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)

⇒ Phương trình có hai nghiệm phân biệt 

b, Để phương trình có hai nghiệm cùng dương thì : 

\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)

c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)

Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)

Kết luận ....

Trần Minh Nguyệt
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
29 tháng 5 2020 lúc 15:26

Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).

a, Thay m = 5 vào biểu thức ta đc 

 \(x^2-2\left(5+6\right)x+5-4=0\)

\(x^2-33x+1=0\)

\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)

b, Ta có :

\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)

\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)

Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x 

Khách vãng lai đã xóa