Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chiyuki Fujito
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 4 2021 lúc 16:45

\(P=xy+yz+zx-2xyz=\left(xy+yz+zx\right)\left(x+y+z\right)-2xyz\)

\(P=xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+xyz\ge0\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

Do vai trò của x;y;z là như nhau, ko mất tính tổng quát, giả sử \(z=min\left\{x;y;z\right\}\Rightarrow z\le\dfrac{1}{3}\)

\(P=xy\left(1-2z\right)+z\left(x+y\right)=xy\left(1-2z\right)+z\left(1-z\right)\)

\(P\le\dfrac{\left(x+y\right)^2}{4}\left(1-2z\right)+z\left(1-z\right)=\dfrac{\left(1-z\right)^2\left(1-2z\right)}{4}+z\left(1-z\right)\)

\(P\le\dfrac{1+z^2-2z^3}{4}=\dfrac{1}{4}+\dfrac{z.z.\left(1-2z\right)}{4}\le\dfrac{1}{4}+\dfrac{1}{27.4}\left(z+z+1-2z\right)^3=\dfrac{7}{27}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

phạm kim liên
Xem chi tiết
Edogawa Conan
16 tháng 8 2021 lúc 16:49

Ta có:\(\sqrt{\dfrac{yz}{x^2+2017}}=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\)

  \(=\sqrt{\dfrac{y}{x+y}\cdot\dfrac{z}{x+z}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\)

Tương tự ta có:\(\sqrt{\dfrac{zx}{y^2+2017}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{z}{y+z}}{2}\)

                         \(\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)

Cộng vế với vế ta có:

\(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\)

\(\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}+\dfrac{z}{z+y}+\dfrac{x}{x+y}+\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)

\(=\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}}{2}=\dfrac{1+1+1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{2017}}{\sqrt{3}}\)

Trang-g Seola-a
Xem chi tiết
Le Dinh Quan
Xem chi tiết
tth_new
20 tháng 2 2020 lúc 7:12

Sửa đề VP là \(\frac{25}{3\sqrt[3]{4\left(xy+yz+zx\right)}}\).

Tham khảo:[TOPIC] ÔN THI BẤT ĐẲNG THỨC $\boxed{\text{THPT CHUYÊN VÀ HSG TỈNH}}$ NĂM HỌC 2019-2020 - Trang 2 - Bất đẳng thức và cực trị - Diễn đàn Toán học

Khách vãng lai đã xóa
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
8 tháng 12 2023 lúc 21:31

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

Nguyễn Phan Văn Trường
Xem chi tiết
Nguyễn Phan Văn Trường
24 tháng 12 2020 lúc 21:27

nhờ mn giúp mk bài này vs ạ

mk đang cần gấp !

cảm ơn mn nhiều

Nguyễn Việt Lâm
25 tháng 12 2020 lúc 8:57

Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)

\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)

Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)

Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)

\(\Rightarrow3\ge a^5+b^6+b^5\)

BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\) 

Ta có:

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)

Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)

Từ (1);(2) \(\Rightarrow\) đpcm

Dieren
Xem chi tiết
VUX NA
Xem chi tiết
Akai Haruma
7 tháng 9 2021 lúc 8:06

Lời giải:

$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$

$=(2x-1)(2y-1)(2z-1)+1$

Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$

$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$

$\Rightarrow 2\text{VT}\leq 2$

$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.

Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.