Những câu hỏi liên quan
Tạ Uyên
Xem chi tiết
Trên con đường thành côn...
12 tháng 2 2022 lúc 19:02

Do \(0\le a,b,c\le1\)

nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)

Ta cũng có:

\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)

Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)

\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)

\(=3\)

Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)

 

Bình luận (1)
Tạ Uyên
12 tháng 2 2022 lúc 18:14

giúp mình câu hỏi này với ah.

Bình luận (0)
你混過 vulnerable 他 難...
Xem chi tiết
quang dũng lê
Xem chi tiết
Akai Haruma
26 tháng 2 2022 lúc 23:26

Lời giải:
Do $a,b,c\in [0;1]$ nên:

$a^2(1-b)\leq 0$

$b^2(1-c)\leq 0$

$c^2(1-a)\leq 0$

Cộng theo vế suy ra: $a^2+b^2+c^2\leq a^2b+b^2c+c^2a$ 

Ta có đpcm.

Bình luận (1)
Võ Châu Minh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2020 lúc 23:01

Đề bài thiếu, a;b;c bất kì thì ko thể giải được

Ít nhất a;b;c phải dương

Bình luận (0)
Nguyễn Việt Lâm
28 tháng 8 2020 lúc 14:11

Ta có:

\(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+ab^2+b^3+bc^2+c^3+ca^2+a^2b+b^2c+c^2a\)

\(\ge2\sqrt{a^3.ab^2}+2\sqrt{b^3.bc^2}+2\sqrt{c^3.ca^2}+a^2b+b^2c+c^2a=3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}=a^2+b^2+c^2+\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)

\(P\ge a^2+b^2+c^2+\frac{9}{2\left(a^2+b^2+c^2\right)}-\frac{1}{2}\)

\(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2\left(a^2+b^2+c^2\right)}+\frac{1}{2}\left(a^2+b^2+c^2\right)-\frac{1}{2}\)

\(P\ge2\sqrt{\frac{9\left(a^2+b^2+c^2\right)}{4\left(a^2+b^2+c^2\right)}}+\frac{1}{2}.\frac{1}{3}\left(a+b+c\right)^2-\frac{1}{2}=4\)

\(P_{min}=4\) khi \(a=b=c=1\)

Bình luận (0)
Phương Khánh
Xem chi tiết
tthnew
22 tháng 4 2020 lúc 16:41

Áp dụng BĐT Bunyakovski\(,\) ta có: \(\left(a^2b+b^2c+c^2a\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)\ge\left(a+b+c\right)^2\)

Do đó: \(VT\ge\frac{\left(a+b+c\right)^3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\ge9abc\)

Bất đẳng thức cuối tương đương: \(\left(a+b+c\right)^3\ge9\left(ab+bc+ca\right)\) \((\ast)\)

Có: \(3=a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(\therefore\left(ab+bc+ca\right)=\frac{\left(a+b+c\right)^2-3}{2}\)

\((\ast)\) \(\Leftrightarrow\left(a+b+c\right)^3\ge\frac{9}{2}\)\(\Big[(a+b+c)^2-3\Big] \)

\(\Leftrightarrow\frac{1}{2}\left(2a+2b+2c+3\right)\left(a+b+c-3\right)^2\ge0\)

Bất đẳng thức cuối hiển nhiên.

Đẳng thức xảy ra khi \(a=b=c=1\). Done.

Bình luận (0)
tthnew
23 tháng 4 2020 lúc 8:39

Không muốn cách dễ hiểu như trên thì dùng cách khó hiểu một tí cũng hong sao :3

Giả sử \(c=\min\{a,b,c\}\)\(,\) ta có:

\(\text{VT-VP}={\frac { \left( a+b+c \right) \Big[{c}^{2} \left( a-b \right) ^{2} \left( a+b \right) +{a}^{2} \left( b-c \right) \left( b+c \right) \left( a- c \right) \Big]}{ab+ac+bc}}+{\frac {abc \left( 2\,a+2\,b+2\,c+3 \right) \left( a+b+c-3 \right) ^{2}}{2\,ab+2\,ac+2\,bc}} \geqq 0\)

Bình luận (0)
Trần Quốc Khanh
23 tháng 4 2020 lúc 21:12

Thiên tài

Bình luận (0)
Trần Minh Tiến
Xem chi tiết
missing you =
12 tháng 6 2021 lúc 16:44

? abc=? (1 hay 2020)

Bình luận (1)
你混過 vulnerable 他 難...
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
Vũ Việt Bình
1 tháng 10 2018 lúc 17:27

What do you want to ask?

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 4 2018 lúc 2:08

Thực hiện phép nhân đa thức với đa thức ở vế trái. 

=> VT = VP (đpcm)

Bình luận (0)