20x + 5 = 45
\(\sqrt{25x+5}+\sqrt{45}\sqrt{20x+4}-\sqrt{\dfrac{5x+1}{16}}=\dfrac{27\sqrt{5}}{4}\)
tìm x
=>\(\sqrt{5x+1}\left(\sqrt{5}-6\sqrt{5}-\dfrac{1}{4}\right)=\dfrac{27\sqrt{5}}{4}\)
=>căn 5x+1=\(\dfrac{27\sqrt{5}}{28\sqrt{5}-1}\)
=>5x+1=0,96
=>5x=-0,04
=>x=-0,04/5=-0,008
rút gọn
a)3 √5 + √20-2 √5
b)2 √2+ √8+ √50
c) 4√3+ √ 27 -√45 +2 √5
d) √ 75+ √ 48- √300
e)( √28- √12- √7) √7 +2 √21
f)( √99- √18- √11) √11+3 √22
g)3 √45-5 √125x +7 √20x+28(x>=0)
a: \(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}=3\sqrt{5}\)
b: \(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}=9\sqrt{2}\)
c: \(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}=7\sqrt{3}-\sqrt{5}\)
d: \(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}=-\sqrt{3}\)
e: \(=\left(\sqrt{7}-2\sqrt{3}\right)\cdot\sqrt{7}+2\sqrt{21}\)
=7-2*căn 21+2*căn 21
=7
f: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}\)
=22-3*căn 22+3*căn 22
=22
a) \(3\sqrt{5}+\sqrt{20}-2\sqrt{5}\)
\(=3\sqrt{5}+2\sqrt{5}-2\sqrt{5}\)
\(=3\sqrt{5}\)
b) \(2\sqrt{2}+\sqrt{8}+\sqrt{50}\)
\(=2\sqrt{2}+2\sqrt{2}+5\sqrt{2}\)
\(=9\sqrt{5}\)
c) \(4\sqrt{3}+\sqrt{27}-\sqrt{45}+2\sqrt{5}\)
\(=4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+2\sqrt{5}\)
\(=7\sqrt{3}-\sqrt{5}\)
d) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\)
\(=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\)
\(=-\sqrt{3}\)
e) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(2\sqrt{7}-2\sqrt{3}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=\left(\sqrt{7}-2\sqrt{3}\right)\sqrt{7}+2\sqrt{21}\)
\(=7-2\sqrt{21}+2\sqrt{21}\)
\(=7\)
f) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(3\sqrt{11}-3\sqrt{2}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
\(=\left(2\sqrt{11}-3\sqrt{2}\right)\sqrt{11}+3\sqrt{22}\)
\(=22-3\sqrt{22}+3\sqrt{22}\)
\(=22\)
g) \(3\sqrt{45}-5\sqrt{125x}+7\sqrt{20x}+28\)
\(=9\sqrt{5}-25\sqrt{5x}+14\sqrt{5x}+28\)
\(=9\sqrt{5}-11\sqrt{5x}+28\)
Tìm x
a)(x+12)^2-9x^2=0
b)20x^3-15x^2+7x=45-38x
c)16x^4-40x^3+10x^2=80x^3-20x^2+196x
d)-4.(x-7)+11x=-x+3.(x+5)
e)4x.(x^2-3)+x=4x^3-3x+5
a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)
=>(-2x+12)(4x+12)=0
=>x=-3 hoặc x=6
b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)
=>\(x\simeq0.93\)
d: =>-4x+28+11x=-x+3x+15
=>7x+28=2x+15
=>5x=-13
=>x=-13/5
e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)
=>-9x=-3x+5
=>-6x=5
=>x=-5/6
20x2-45/4x2+12x +9
\(\dfrac{20x^{2}-45}{4x^{2}+12x+9}\)\(=\dfrac{5.(4x^{2}-9)}{(2x)^{2}+2.2x.3+3^{2}}\)\(=\dfrac{5(2x-3)(2x+3)}{(2x+3)^{2}}\)\(=\dfrac{5(2x-3)}{2x+3}\)
9x2+12x-45
20x2+13x-21
9x2 +12x -45 = (3x)2 + 2 . 3x . 2 + 4 - 49
= ( (3x)2 + 2 . 3x . 2 + 22 ) - 49
= ( 3x + 2 )2 - 72
= ( 3x + 2 - 7 )( 3x + 2 - 7 )
\(\frac{7}{8}x-5x+45=\frac{20x+1,5}{6}\)
\( \dfrac{7}{8}x - 5x + 45 = \dfrac{{20x + 1,5}}{6}\\ \Leftrightarrow \dfrac{7}{8}x - 5\left( {x - 9} \right) = \dfrac{{20x + 1,5}}{6}\\ \Leftrightarrow 42x - 240x + 2160 = 160x + 12\\ \Leftrightarrow - 358x = - 2148\\ \Leftrightarrow x = 6 \)
\(\frac{7}{8}x-5x+45=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-\frac{5x+45}{1}=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x.3}{8.3}-\frac{24.\left(5x+45\right)}{24}=\frac{4.\left(20x+1,5\right)}{6.4}\)
\(\Leftrightarrow\frac{21x}{24}-\frac{24.\left(5x+45\right)}{24}=\frac{4.\left(20x+1,5\right)}{24}\)
\(\Rightarrow21x-24.\left(5x+45\right)=4.\left(20x+1,5\right)\)
\(\Leftrightarrow21x-120x-1080=80x+6\)
\(\Leftrightarrow-99x-1080=80x+6\)
\(\Leftrightarrow-99x-80x=6+1080\)
\(\Leftrightarrow-179x=1086\)
\(\Leftrightarrow x=1086:\left(-179\right)\)
\(\Leftrightarrow x=-\frac{1086}{179}\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-\frac{1086}{179}\right\}.\)
Chúc bạn học tốt!
\( \dfrac{7}{8}x - 5x + 45 = \dfrac{{20x + 1,5}}{6}\\ \Leftrightarrow \dfrac{7}{8}x - 5\left( {x - 9} \right) = \dfrac{{20x + 1,5}}{6}\\ \Leftrightarrow 21x - 120x + 1080 = 80x + 6\\ \Leftrightarrow - 179x = - 1074\\ \Leftrightarrow x = 6 \)
B=x^6-20x^5-20x^4-20x^3-20x^2-20x+3 tại x=21
Thay20=x-1 vào B
Ta có \(x=21\Rightarrow x-1=20\)
biểu thức B có dạng :
\(B=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)
\(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+3=x+3\)
Vậy \(B=21+3=24\)
Tính giá trị bt sau:
A=x^6-20x^5-20x^4-20x^3-20x^2-20x với x=24
B=x^5-36x^4+37x^3-69x^2-34x+15 với x=35
Tính
M = x^6 - 20x^5 - 20x^4 - 20x^3 - 20x^2 - 20x + 3 tại x = 21
N = x^7 - 26x^6 + 27x^5 - 47x^4 - 7x^3 + 50x^2 +x - 24 tại x = 24
\(M=x^6-20x^5-20x^4-20x^3-20x^2-20x+3\)
\(M=x^6-\left(x-1\right)x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+3\)
\(M=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x+3\)
\(M=x+3\) (1)
Thay \(x=21\)vào (1) ta được:
\(M=21+3\)
\(M=24\)
Còn câu N bạn tham khảo tại link này nha:
Câu hỏi của Hoang Linh - Toán lớp 8 | Học trực tuyến
Chúc bạn học thật tốt!