Cho đa thức H(x)=ax^2+bx+c
Biết 5a-3b+2c=0, hãy chứng tỏ rằng (H-1)*H(-2)<=0
giải giúp em với nhé mấy anh chị giỏi toán.
Cho đa thức H(x)=ax2+bx+c
Biết 5a-3b+2c=0,hãy chứng tỏ rằng H(-1).H(-2)<;=0
\(H\left(-1\right)=a-b+c\) (1)
\(H\left(-2\right)=4a-2b+c\) (2)
Lấy (1) + (2) vế theo vế được
\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)
Suy ra \(H\left(-1\right)=H\left(-2\right)=0\Rightarrow H\left(-1\right).H\left(-2\right)=0\)
Hoặc \(H\left(-1\right)\)và\(H\left(-2\right)\)có 1 số âm và một số dương
\(\Rightarrow H\left(-1\right).H\left(-2\right)<0\)
Vậy \(H\left(-1\right).H\left(-2\right)\le0\)
Cho đa thức: H(x)= ax2+bx+c. Biết 5a-3b+2c=0, hãy chứng tỏ rằng: H(-1).H(-2) 0
Ta có : 5a-3b+2c =0.
H(x)= ax2 +bx+c. => H(-1) = a.(-1)2 +b.(-1) +c= a-b+c.
=>H(-2)= a.(-2)2 +b.(-2)+c= 4a-2b+c.
=> H(-1) + H(-2) = 5a-3b+ 2c= 0.
=> H(-1) = H(-2). => H(-1). H(-2)=[H(-1)]2 > = 0.
Vậy H(-1).H(-2) >= 0 (dpcm)
Nhớ k đúng cho mình nha. Kêu gọi bạn bè k luôn nha. Có bài gì khó thì hỏi mình. Mình bày cho . MÌNH CŨNG LỚP 7. MONG DDUOCJ KẾT BẠN.
Ta có: \(H\left(-1\right)=-\left(H-2\right)\)
\(\Rightarrow H\left(-1\right).H\left(-2\right)=-H^2\left(-2\right)\le0\)
\(\Rightarrow H\left(-1\right).H\left(-2\right)\ge0\left(đpcm\right)\)
Mà đề bài bảo chứng minh nhỏ hơn hoặc bằng hay lớn hơn hoặc bằng vậy bạn ????
Nếu là bé hơn hoặc bằng thì nói mình làm lại nha
Cho đa thức: H(x)= ax2+bx+c. Biết 5a-3b+2c=0, hãy chứng tỏ rằng: H(-1).H(-2) \(\le\)0
Tính H(-1) = a.(-1)2 + b.(-1) + c = a - b + c
H(-2) = a.(-2)2 + b.(-2) + c = 4a - 2b + c
=> H(-1) + H(-2) = 5a - 3b + 2c = 0
=> H(-1) = - H(-2)
=> H(-1) . H(-2) = [- H(-2)].h(-2) = - H2(-2) \(\le\) 0 Vì H2(-2) \(\ge\) 0
=> ĐPCM
Ta có \(H\left(-1\right)=a-b+c;H\left(-2\right)=4a-2b+c\)
\(\Rightarrow H\left(-1\right)+H\left(-2\right)=a-b+c+4a-2b+c=5a-3b+2c=0\left(1\right)\)
\(\Rightarrow H\left(-1\right)=-H\left(-2\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow H\left(-1\right)\cdot H\left(-2\right)=-H\left(-2\right)\cdot H\left(-2\right)=-\left[H\left(-2\right)\right]^2=\le0\)
Cho đa thức H(x)=ax^2+bx+c. Biết 5a-3b+c=0. Hãy chứng tỏ rằng H(-1).H(-2)< hoặc = 0.
#Giải:
Ta có:H(x)=ax^2+bx+c
=>H(-1)=a-b+c
H(-2)=4a-2b+c
=>H(-1)+H(-2)=a-b+c+4a
=5a-3b+2c
=a
=>H(-1)-H(-2)=0
H(-1)=H(-2)
=>H(-1).H(-2)=0
H(-1).H(-2)<0
=>H(-1).H(-2)< hoặc =0.
1) Xác định đa thức H(x)= ax2 +bx +c biết H(1) = 0, H(-1)=6, H(-2)= 3
2) Cho g(x) = ax2 +bx+c. Biết 5a-3b+2c=0 . Chứng tỏ g(-1). g(-2) < hoặc =0
Cho đa thức P(x) = ax^2 + bx + c.
Chứng tỏ rằng P(-1).P(-2) ≤ 0 biết rằng 5a – 3b + 2c = 0
P(-1) = (a – b + c);
P(-2) = (4a – 2b + c)
P(-1) + P(-2) = (a – b + c) + (4a – 2b + c) = 5a – 3b + 2c = 0
Þ P(-1) = – P(-2)
Do đó P(-1).P(-2) = – [P(-2)]^2 ≤ 0
Vậy P(-1).P(-2) ≤ 0
Cho đa thức P(x) = ax2 + bx + c.
Chứng tỏ rằng P(-1).P(-2) ≤ 0 biết rằng 5a – 3b + 2c = 0
Cho đa thức P(x)=ax2 +bx +c. Chứng tỏ rằng P(-1).P(-2)≤ 0 biết rằng 5a -3b +2c=0
Nếu như theo mik ns thì bài toán làm sau đây
\(p\left(-1\right)=a\left(-1\right)^2-b.1+c=a-b+c\) (1)
\(p\left(2\right)=a\left(2^2\right)+b.2+c=4a-2b+c\) (2)
Lấy (1)+(2)
\(p\left(-1\right)+p\left(-2\right)=5a-3b+2c=0\)
\(p\left(-1\right)=-P\left(-2\right)\)\(=p\left(2\right)\)
Lấy p(-1).p(2) trái dấu
\(\Rightarrow p\left(-1\right).p\left(2\right)\le0\)
\(\Rightarrow p\left(-1\right).p\left(-2\right)\le0\)
Cho đa thức H(x) = ax2 + bx + c. Biết 5a - 3b + 2c = 0, c/m: H(-1).H(-2) \(\le\) 0
Ta có:H(-1)=a-b+c
H(-2)=4a-2b+c
=>H(-1)+H(-2)=5a-3b+2c=0(giả thiết)
=>H(-1)=-H(-2)
=>H(-1).H(-2)=-H(-2).H(-2)=-H(-2)2\(\le\)0
Vậy...
Theo đề bài cho ta có:
H(-1) = a - b - c
H(-2) = 4a - 3b + 2c
\(\Rightarrow\)→\(\Rightarrow\) H(-1) + H(-2)=(a - b + c) +( 4a -3b +2c) = 5a - 3b + 2c = 0
→ H(-1) = -H(-2)
→ H(-1) . H(-2) = -[H(-2)]2
Mà -[H(-2)] 2 lớn hơn hoặc bằng 0 ↔ -[H(-2)]2 ≤ 0
Vậy H(-1) . H(-2) ≤ 0 (đpcm)
Toán Đại số lớp 7