Cho a3 \(+\) 6 = -3a \(-\)2a2
Tính giá trị của A = \(\dfrac{a-1}{a+3}\)
Tính giá trị của biểu thức A=\(\dfrac{3a-2b}{3a+2b}\) biết \(\dfrac{a}{6}=\dfrac{b}{9}\).
Ta có: \(\dfrac{a}{6}=\dfrac{b}{9}\) suy ra 9a=.....,hay 3a=....., tức là 3a-2b =.....
Vậy giá trị của biểu thức A là:...............
\(\dfrac{a}{6}=\dfrac{b}{9}\)
\(\Leftrightarrow9a=6b\)
\(\Rightarrow3a=2b\)(chia cả 2 vế cho 3)
\(\Rightarrow3a-2b=0\Rightarrow\dfrac{3a-2b}{3a+2b}=0\)
Chúc bn học tốt
Ta có: `a/6 = b/9` `-> 9a = 6b`
`-> 3a = 2b`
Vì `3a = 2b` nên `3a - 2b = 0`.
`-> A = (3a - 2b)/(3a + 2b) = 0/(3a + 2b) = 0`
Vậy giá trị biểu thức `A` là `0`.
Cho biểu thức: A = 2 a 2 − 5 a + 4 + 3 a 2 − 16 : 5 a 2 + 3 a − 4 , với a ≠ 1 và a ≠ ± 4
a) Rút gọn biểu thức A.
b) Tính giá trị biểu thức A khi a = 5.
a) Gợi ý: a 2 − 5 a + 4 = ( a − 1 ) ( a − 4 ) ; a 2 + 3 a − 4 = ( a − 1 ) ( a + 4 )
Ta rút gọn được A = a + 1 a − 4
b) Thay a = 5 vào biểu thức A tìm được A = 6
c) Ta biến đổi A = a + 1 a − 4 = 1 + 5 a − 4
⇒ A ∈ ℤ ⇒ a ∈ − 1 ; 3 ; 5 ; 9
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)
Cho biểu thức D=(\(\dfrac{a-1}{3a+\left(a-1\right)^2}\)-\(\dfrac{1-3a+a^2}{a^3-1}\)-\(\dfrac{1}{a-1}\)) : \(\dfrac{a^2+1}{1-a}\)
a) Tìm những giá trị của a để D xác định
b)Rút gọn D
c)Tìm giá trị của a để \(\dfrac{1}{D}\)nhỏ nhất và tìm giá trị nhỏ nhất đó
`a)D` xác định `<=>a-1 ne 0<=>a ne 1`
`b)` Với `a ne 1` có:
`D=([a-1]/[a^2+a+1]-[1-3a+a^2]/[(a-1)(a^2+a+1)]-1/[a-1]).[1-a]/[a^2+1]`
`D=[(a-1)^2-1+3a-a^2-a^2-a-1]/[(a-1)(a^2+a+1)].[-(a-1)]/[a^2+1]`
`D=[a^2-2a+1-1+3a-a^2-a^2-a-1]/[(-a^2-1)(a^2+a+1)]`
`D=[-a^2-1]/[(-a^2-1)(a^2+a+1)]=1/[a^2+a+1]`
`c)` Với `a ne 1` có:
`1/D=1/[1/[a^2+a+1]]=a^2+a+1=(a+1/2)^2+3/4`
Vì `(a+1/2)^2 >= 0 AA a ne 1`
`=>(a+1/2)^2+3/4 >= 3/4 AA a ne 1`
Hay `1/D >= 3/4 AA a ne 1=>1/D _[mi n]=3/4`
Dấu "`=`" xảy ra `<=>a=-1/2` (t/m).
\(\)Bài 1: Rút gọn:
M= (\(\dfrac{2a}{2a+b}\)-\(\dfrac{4a^2}{4a^2+4ab+b^2}\)):(\(\dfrac{2a}{4a^2-b^2}+\dfrac{1}{b-2a}\))
Bài 2: Cho biểu thức:
P=(\(\dfrac{a+6}{3a+9}-\dfrac{1}{a+3}\)):\(\dfrac{a+2}{27a}\)
a) Tìm ĐKXĐ và rút gọn
b) Tính giá trị của P tại a=1
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
Rút gọn rổi tính giá trị của biếu thức: 1 a + 3 + 2 a 2 + 5 a + 6 + 3 4 a 2 + 15 a + 14 tại a = 1 .
Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2 :
a) \(\dfrac{3a-1}{3a+1}+\dfrac{a-3}{a+3}\)
b) \(\dfrac{10}{3}-\dfrac{3a-1}{4a+12}-\dfrac{7a+2}{6a+18}\)
Tìm giá trị của tham số a để hàm số sau đạt cực tiểu tại x = π 3
f x = 2 a 2 - 3 sin x - 2 a sin 2 x + 3 a - 1
A. a = -3
B. a = 1
C. a ∈ - 3 ; 1
D. a ∈ ∅
Ta có
f ' x = 2 a 2 - 3 cos x + 4 a cos 2 x f " x = 2 3 - a 2 sin x + 8 a sin 2 x
Hàm số f(x) đạt cực tiểu tại x = π 3 khi và chỉ khi
f ' π 3 = 0 f " π 3 > 0 ⇔ a 2 - 2 a + 3 = 0 - 3 a 2 - 4 a - 3 > 0 ⇔ a = 1
Đáp án B
Cho a^3 + 6 = - 3a - 2a^2 Tính giá trị của A = (a-1)/(a+3)
\(a^3+6=-3a-2a^2\)
\(\Leftrightarrow a^3+2a^2+6+3a=0\)
\(\Leftrightarrow a^2\left(a+2\right)+3\left(a+2\right)=0\)
\(\Leftrightarrow\left(a+2\right)\left(a^2+3\right)=0\)
\(\Leftrightarrow a+2=0\left(do.a^2+3>0\right)\)
<=>a=-2
thay a=-2 vào biểu thức ta được \(A=\frac{-2-1}{-2+3}=\frac{-3}{1}=-3\)
Ta có : a3+6=-3a-2a2
<=> a3+6+3a+2a2=0
<=>(a3+2a2)+(3a+6)=0
<=>a2(a+2)+3(a+2)=0
<=>(a2+3)(a+2)=0
\(\hept{\begin{cases}a^2+3=0\\a+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=-3\\a=-2\end{cases}\Leftrightarrow}\hept{\begin{cases}a\in\varnothing\\a=-2\end{cases}}}\)
Thay a=-2 vào biểu thức :
=> A= \(\frac{-2-2}{-2+3}=\frac{-4}{1}=-4\)
\(a^3+6=-3a-2a^2\)
\(\Leftrightarrow\)\(a^3+2a^2+3a+6=0\)
\(\Leftrightarrow\)\(a^2\left(a+2\right)+3\left(a+2\right)=0\)
\(\Leftrightarrow\)\(\left(a+2\right)\left(a^2+3\right)=0\)
\(\Leftrightarrow\)\(a+2=0\) (vì a2 + 3 # 0)
\(\Leftrightarrow\)\(a=-2\)
Vậy \(A=\frac{a-1}{a+3}=\frac{-2-1}{-2+3}=3\)
\(-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}-\dfrac{3a+1}{1-a^2}\right):\dfrac{2a+1}{a^2-1}\)
a)Rút gọn biểu thức B
b)Tính giá trị của a để B = 3/a-1
\(-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}-\dfrac{3a+1}{1-a^2}\right):\dfrac{2a+1}{a^2-1}\left(dk:a\ne1,a\ne-1\right)\)
\(=-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a+1}{a^2-1}\right):\dfrac{2a+1}{\left(a-1\right)\left(a+1\right)}\\ =-\left(\dfrac{\left(a-1\right)^2-a\left(a+1\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\dfrac{a^2-2a+1-a^2-a+3a+1}{\left(a-1\right)\left(a+1\right)}.\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\)
\(=-\dfrac{2}{2a+1}\)