Thu gon don thuc sau (x;y la bien so) roi xac dinh: phan he so, phan bien, bac cua don thuc: \(-ax\left(xy^3\right)^2.\left(-by\right)\)
1) Cho don thuc 2x2y ( -2,5x3y2z)
a) Hay thu gon don thuc va xac dinh bac cua don thuc thu gon
b) Viet don thuc thu gon tren thanh tong cua 2 don thuc
a) Ta có: \(2x^2y\cdot\left(-2.5x^3y^2z\right)\)
\(=\left(-2.5\cdot2\right)\cdot\left(x^2\cdot x^3\right)\cdot\left(y\cdot y^3\right)\cdot z\)
\(=-5x^5y^4z\)
1) Cho don thuc 12x5y2 ( -12,5zx2y5z)
a) Hay thu gon don thuc va xac dinh bac cua don thuc thu gon
b) Viet don thuc thu gon tren thanh tong cua 2 don thuc
a) Ta có: \(12x^5y^2\cdot\left(-12.5zx^2y^5z\right)\)
\(=\left(-12.5\cdot12\right)\cdot\left(x^5\cdot x^2\right)\cdot\left(y^2\cdot y^5\right)\cdot z^2\)
\(=-150x^7y^7z^2\)
thu gon don thuc sau
(-2x^3y^2z)^2 (-1phan 4) x^-2yz)
Cho don thuc A=(-2xy)-4/5x^2y^3 a,Thu gon don thuc tren ,cho biet phan he so va phan bien ,tim bac cua don thuc b,Tinh gia trim cua don thuc tai x=1,y=-1
a, P=-3(x^3.x)(y^2.y^3)
=-3x^4y^5
b, Thay x=-1 , y=2 vào đơn thức P . Ta có :
P=-3.(-1)^4.2^5
P=3.1.32
P=96
Cho don thuc A=(-2xy)-4/5x^2y^3 a,Thu gon don thuc tren ,cho biet phan he so va phan bien ,tim bac cua don thuc b,Tinh gia trim cua don thuc tai x=1,y=-1
thu gon va tim bac cua don thuc 2xy(x^2yz)
cho don thuc A=19/5 xy^2(x^3y)(-3x^13y^5)^0
a, thu gon don thuc A
b, tim he so va bac cua don thuc
c, tinh gia tri cua don thuc tai x=1, y=2
a: \(A=\dfrac{19}{5}xy^2\cdot x^3y=\dfrac{19}{5}x^4y^3\)
b: Hệ số là 19/5 và bậc là 7
c: Khi x=1 và y=2 thì \(A=\dfrac{19}{5}\cdot1^4\cdot2^3=\dfrac{19}{5}\cdot8=\dfrac{152}{5}\)
thu gon don thuc
(-x^3*z*y)*(2/3*y*x^2)^2
giup mk voi
\(\left(-x^3.z.y\right).\left(\dfrac{2}{3}.y.x^2\right)^2\)
\(=-x^3.z.y.\dfrac{4}{9}.y^2.x^4\)
\(=-\dfrac{4}{9}x^7.y^3.z\)
`(-x^3zy)(2/3yx^2)^2`
`=-4/9x^3zy.y^2x^4`
`=-4/9x^{3+4}.y^{1+2}z`
`=-4/9x^7y^3z`
\(\left(-x^3zy\right)\left(\dfrac{2}{3}yx^2\right)^2\)
\(\Leftrightarrow\left(-x^3yz\right)\left(\dfrac{2}{3}x^2y\right)\left(\dfrac{2}{3}x^2y\right)\)
\(\Leftrightarrow-\left[x^7y^3z\left(\dfrac{2}{3}\right)^2\right]\)
\(\Leftrightarrow-\dfrac{4}{9}x^7y^3z\)
Thu gon va tim bac cua don thuc sau:
(4xy^2)^3 . 3xyz