Help me!!!
Cho x,y,z > 0. CMR: \(\left(x+y+x\right).\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)
dùng bất đăngt thức cô - si nha!!!
Áp dụng BĐT Cô - si dưới dạng engel ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\left(x+y+z\right)\times\dfrac{9}{x+y+z}=9\)
Đẳng thức xảy ra khi \(x=y=z\)
Chúc bạn học tốt !!
Chứng minh rằng:
\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\left(\forall x,y,z>o\right)\)
Cho x, y, z > 0 và \(x+y\le z\) . CMR :
\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)
\(VT=\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2+y^2}{z^2}+z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}>=2\cdot\sqrt{\dfrac{y^2}{x^2}\cdot\dfrac{x^2}{y^2}}=2\)
=>\(VT>=5+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}>=2\cdot\sqrt{\dfrac{x^2}{z^2}\cdot\dfrac{z^2}{16x^2}}=\dfrac{1}{2}\)
\(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}>=\dfrac{1}{2}\)
và \(\dfrac{1}{x^2}+\dfrac{1}{y^2}>=\dfrac{2}{xy}>=\dfrac{2}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{8}{\left(x+y\right)^2}\)
=>\(\dfrac{15}{16}z^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)>=\dfrac{15}{16}z^2\cdot\dfrac{8}{\left(x+y\right)^2}=\dfrac{15}{2}\left(\dfrac{z}{x+y}\right)^2=\dfrac{15}{2}\)
=>VT>=5+1/2+1/2+15/2=27/2
Cho x,y>0. CMR: \(\left(x+y\right)^2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\right)\ge10\)
\(P=\left(x^2+y^2+2xy\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{x^2+y^2+2xy}{x^2+y^2}\)
\(P=\left(x^2+y^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2xy\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+1+\dfrac{2xy}{x^2+y^2}\)
\(P\ge2xy.\dfrac{2}{xy}+\dfrac{2\left(x^2+y^2\right)}{xy}+1+\dfrac{2xy}{x^2+y^2}\)
\(P\ge\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}+\dfrac{3}{2}\left(\dfrac{x^2+y^2}{xy}\right)+5\)
\(P\ge2\sqrt{\dfrac{2xy\left(x^2+y^2\right)}{2xy\left(x^2+y^2\right)}}+\dfrac{3}{2}.\dfrac{2xy}{xy}+5=10\)
Dấu "=" xảy ra khi \(x=y\)
a ,Tính \(A=\dfrac{1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(y-z\right)\left(z-x\right)}+\dfrac{1}{\left(z-x\right)\left(x-y\right)}\)
b, Cho a,b,c \(\ne\) 0 thỏa mãn a+b+c=0
CMR: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=0\)
c, Cho biểu thức :
\(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}+\dfrac{z}{\left(y-z\right)\left(z-x\right)}+\dfrac{x}{\left(z-x\right)\left(x-y\right)}\)
CMR : Giá trị bth B không phụ thuộc vào giá trị của biến
b: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=\dfrac{a+b+c}{abc}=0\)
c: \(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(x-z\right)\left(y-z\right)}-\dfrac{x}{\left(x-z\right)\left(x-y\right)}\)
\(=\dfrac{y\left(x-z\right)-z\left(x-y\right)-x\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+zy-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)
cho x,y,z ≠0 và đôi một khác nhau thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). . CMR: \(\left(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\right)\left(x^{2016}+y^{2017}+z^{2018}\right)=xy+yz+zx\)
Cho x,y,z>0 và x+y+z=1
CMR: \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge64\)
Ta cần chứng minh \((1+a)(1+b)(1+c) \geq (1+\sqrt[3]{abc})^3\)
\(\Leftrightarrow 1+abc+ab+bc+ca+a+b+c \geq 1+3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}+abc\)
\(\Leftrightarrow ab+bc+ca+a+b+c \geq 3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}\)
Đúng theo BĐT AM-GM. Áp dụng vào ta có:
\(\left(1+\frac{1}{x} \right)\left(1+\frac{1}{y} \right)\left(1+\frac{1}{z} \right)=\dfrac{(1+x)(1+y)(1+z)}{xyz} \geq \dfrac{(1+\sqrt[3]{xyz})^3}{xyz} \geq 64\)
Từ \(x+y+z=1\Rightarrow xyz\le \frac{1}{27}\)
\(\Rightarrow \dfrac{(1+\sqrt[3]{xyz})^3}{xyz}=\bigg(\dfrac{1}{\sqrt[3]{xyz}}+1\bigg)^3 \geq 64\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Áp dụng trực tiếp BĐT AM-GM ta có:
\(1+\dfrac{1}{x}=\dfrac{1}{x}\left(x+y+z+x\right)\ge\dfrac{1}{x}4\sqrt[4]{x^2yz}\)
\(\Rightarrow1+\dfrac{1}{x}\ge\dfrac{4}{x}\sqrt[4]{\dfrac{x^4yz}{x^2}}=4\sqrt[4]{\dfrac{yz}{x^2}}\)
Tương tự ta có: \(1+\dfrac{1}{y}\ge4\sqrt[4]{\dfrac{xz}{y^2}};1+\dfrac{1}{z}\ge4\sqrt[4]{\dfrac{xy}{z^2}}\)
\(\Rightarrow\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)\ge4\sqrt[4]{\dfrac{yz}{x^2}}4\sqrt[4]{\dfrac{xz}{y^2}}4\sqrt[4]{\dfrac{xy}{z^2}}=64\)
Còn tỉ tỉ cách nữa đây, cần thì nhắn tin ==
Cho x;y;z>0 và không có 2 số nào đồng thời bằng 0.CMR:
\(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}\ge2\sqrt{1+\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
cho x+y=2.CMR \(\left(x+\dfrac{1}{x^{ }}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge8\) với x,y>0
Lời giải:
Áp dụng BĐT Cô-si với \(x; \frac{1}{x}\) là hai số dương:
\(x+\frac{1}{x}\geq 2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow \left(x+\frac{1}{x}\right)^2\geq 4\)
Tương tự, \(\left(y+\frac{1}{y}\right)^2\geq 4\)
\(\Rightarrow \left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\geq 8\) (đpcm)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ y=\frac{1}{y}\end{matrix}\right.\Leftrightarrow x=y=1\)
P.s: Có thể thấy điều kiện $x+y=2$ là dư thừa.
Hem thừa .-.
\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\ge\dfrac{\left(x+y+\dfrac{4}{x+y}\right)^2}{2}=8\)