4,5(-x^2+16x+36) = 0
\(3^2.x+2^3-4,5+3\frac{1}{2}x=16x+2^3-4,5-15x+6,2\)
\(3^2.x+2^3-4,5+3\frac{1}{2}x=16x+2^3-4,5-15x+6,2.\)
\(\Leftrightarrow9x+8-4,5+\frac{7}{2}x=16x+8-4,5-15x+6,2\)
\(\Leftrightarrow9x+\frac{7}{2}x-16x+15x=8-4,5+6,2-8+4,5\)
\(\Leftrightarrow11,5x=6,2\)
\(\Leftrightarrow x=\frac{62}{115}\)
\(3^2.x+2^3-4,5+3\frac{1}{2}x=16x+2^3-4,5-15x+6,2\)
ban nao tra loi minh tick cho nhanh len nhe
Tìm x biết.
a) 4x^2 - 49 = 0 b) x^2 + 36 = 12x
c) 1/16x^2 - x + 4 = 0 d) x^3 -3√3x2 + 9x - 3√3 = 0
e) (x - 2)^2 - 16 = 0 f) x^2 - 5x - 14 = 0
g) 8x(x - 3) + x - 3 = 0
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a,\(4x^2-49=0\)
\(\Leftrightarrow\left(2x\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}}\)
b.\(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
c.\(\frac{1}{16x^2}-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4x}\right)^2-2.\frac{1}{4x}.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4x}-2\right)^2=0\)
........
Tìm x:
a) \(x^2-3x+2=0\)
b) \(x^3+x^2-36=0\)
c) \(\left(x^2+16\right)^2-\left(16x+1\right)=0\)
a, \(x^2-3x+2=0\\ < =>x^2-x-2x+2=0\\ < =>\left(x^2-x\right)-\left(2x-2\right)=0\\ < =>x\left(x-1\right)-2\left(x-1\right)=0\\ < =>\left(x-2\right)\left(x-1\right)=0\\ < =>\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
b) x3 + x2 - 36 = 0
=> x2.(x + 1) = 36
Vì x2 \(\ge\) 0 => (x + 1) \(\ge\) 0 (1)
Mặt khác: x2 là số chính phương nên những tích ko có số chính phương sẽ bị loại (2)
Từ điều kiện (1) và (2),ta có các TH sau:
TH1 : x2.(x + 1) = 1.36
=> \(\left\{{}\begin{matrix}x^2=1\\x+1=36\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1;-1\\x=35\end{matrix}\right.\) => Loại
TH2: x2.(x+1) = 36.1
=> \(\left\{{}\begin{matrix}x^2=36\\x+1=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=6;-6\\x=0\end{matrix}\right.\) => Loại
TH3: x2.(x + 1) = 4.9
=> \(\left\{{}\begin{matrix}x^2=4\\x+1=9\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2;-2\\x=8\end{matrix}\right.\) => Loại
TH4 : x2.(x + 1) = 9.4
=> \(\left\{{}\begin{matrix}x^2=9\\x+1=4\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=3;-3\\x=3\end{matrix}\right.\) => x = 3
Vậy x = 3
P/s: Đây là cách của mk. Bạn cx có thể í luận thêm để loại bỏ thêm 1 số TH nhé!!!
b)\(x^3+x^2-36=0\)
<=>\(\left(x-3\right)\left(x^2+4x+12\right)=0\)(1)
Vì \(x^2+4x+12=\left(x+2\right)^2+8>0\) với mọi x nên:
(1)<=>x-3=0
<=>x=3
Vậy x=3.
Giải các phương trình sau
1)
a)x3-16x =0
b)2x3 - 50x =0
c)x3-4x2-9x+36=0
a) \(x^3-16x=0\)
<=> \(x\left(x^2-16\right)=0\)
<=> \(x\left(x-4\right)\left(x+4\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=-4;4\end{cases}}\)
b) \(2x^3-50x=0\)
<=> \(2x\left(x^2-25\right)=0\)
<=> \(2x\left(x-5\right)\left(x+5\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x=5;-5\end{cases}}\)
c) \(x^3-4x^2-9x+36=0\)
<=> \(\left(x^3-4x^2\right)-\left(9x-36\right)=0\)
<=> \(x^2\left(x-4\right)-9\left(x-4\right)=0\)
<=> \(\left(x-4\right)\left(x^2-9\right)=0\)
<=> \(\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
<=> \(\orbr{\begin{cases}x=-3;3\\x=4\end{cases}}\)
a)\(x^3-16x=0\)
\(x\left(x^2-4^2\right)=0\)
\(x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
x + 4 =0 x = -4
b)Giống ở câu a
c)\(x^3-4x^2-9x+36=0\)
\(x^2\left(x-4\right)+9\left(x-4\right)=0\)
\(\left(x^2+9\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x^2+9=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\xkoTM\end{cases}}\)
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
Tìm x, biết.
a/ 3x + 2(5 – x) = 0 b/ x(2x – 1)(x + 5) – (2x2 + 1)(x + 4,5) = 3,5
c/ 3x2 – 3x(x – 2) = 36.
d/ (3x2 – x + 1)(x – 1) + x2(4 – 3x) =
Bài 1: Tính chia:
a) (6x5y2 - 9x4y3 + 15x3y4): 3x3y2 b) (2x3 - 21x2 + 67x - 60): (x - 5)
c) (6x3 – 7x2 – x + 2) : (2x + 1) d) (x2 – y2 + 6x + 9) : (x + y + 3)
a: =>3x+10-2x=0
hay x=-10
c: \(\Leftrightarrow3x^2-3x^2+6x=36\)
=>6x=36
hay x=6
(4,5+36) x 2 = ?
\(\left(4,5+36\right)\cdot2\)
\(=4,5\cdot2+36\cdot2\)
\(=9+72\)
\(=81\)
b: 36(x-2)3/32-16x
b) Ta có: \(\frac{36\left(x-2\right)^3}{32-16x}=\frac{36\left(x-2\right)^3}{16\left(2-x\right)}=\frac{-36\left(2-x\right)^3}{16\left(2-x\right)}=\frac{-9\left(2-x\right)^2}{4}\)