Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Đức
Xem chi tiết
Hoàng Lê Bảo Ngọc
23 tháng 10 2016 lúc 20:06

Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)

thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)

Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)

\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)

Trí Phạm
Xem chi tiết
coolkid
11 tháng 1 2020 lúc 19:32

\(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)

\(\Leftrightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)

\(\Leftrightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)

Dễ thấy cái vế sau > 0 nên x=2016

Khách vãng lai đã xóa
coolkid
11 tháng 1 2020 lúc 19:36

Câu b có cách nào hay hơn bằng cách phá ko ta,hóng quá:)

\(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)

\(\Leftrightarrow8x^3+12x^2+6x+1+27x^3-27x^2+9x-1=125x^3\)

\(\Leftrightarrow35x^3-15x^2+15x=125x^3\)

\(\Leftrightarrow90x^3+15x^2-15x=0\)

\(\Leftrightarrow x\left(90x^2+15x-15\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow x=0;x=-\frac{1}{2};x=\frac{1}{3}\)

Khách vãng lai đã xóa
coolkid
11 tháng 1 2020 lúc 19:41

Câu c có cách giải rất hay đó nha :) 

\(\left(2x-5\right)^3+27\left(x-1\right)^3+\left(8-5x\right)^3=0\)

\(\Leftrightarrow\left(2x-5\right)^3+\left(3x-3\right)^3+\left(8-5x\right)^3=0\)

Đặt \(2x-5=a;3x-3=b;8-5x=c\Rightarrow a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)

Khi đó:

\(\left(2x-5\right)^3+27\left(x-1\right)^3+\left(8-5x\right)^3=0\)

\(\Leftrightarrow3\left(2x-5\right)\left(3x-3\right)\left(8-5x\right)=0\)

\(\Leftrightarrow x=\frac{5}{2};x=1;x=\frac{8}{5}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Anh
Xem chi tiết
Lương Ngọc Anh
2 tháng 5 2016 lúc 12:18

Đặt 2x2+x-2015=a; x2-5x-2016=b

phương trình tương đương a2+4b2=4ab

=> a2-4ab+4b2=0

=> (a-2b)2=0

=> a=2b

vậy 2x2+x-2015=2*(x2-5x-2016)

=> x=\(\frac{-2017}{11}\)

Xem chi tiết
Murad đồ thần đao ( ☢ Ŧë...
11 tháng 2 2020 lúc 14:34

Ta có :

\(\left(x^2-2014\right)\left(x^2-2015\right)\left(x^2-2016\right)\)\(=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-2014=0\\x^2-2015=0\\x^2-2016=0\end{cases}}\)

Giải (1) :

    \(x^2-2014=0\)

     \(\hept{\begin{cases}x=\sqrt{2014}\\x=-\sqrt{2014}\end{cases}}\)

Giải (2) :

     \(x^2-2015=0\)

        \(\hept{\begin{cases}x=\sqrt{2015}\\x=-\sqrt{2015}\end{cases}}\)

Giải (3) :

   \(x^2-2016=0\)

    \(\hept{\begin{cases}x=\sqrt{2016}\\x=-\sqrt{2016}\end{cases}}\)

Vậy nghiệm nhỏ nhất của phương trình là \(x=-\sqrt{2016}\)

Chú ý : \(x^2-2014=0\)(1)

            \(x^2-2015=0\)(2)

            \(x^2-2016=0\)(3)

Khách vãng lai đã xóa
Trần Kiều An
Xem chi tiết
Trà My Nguyễn Thị
Xem chi tiết
Không Tên
23 tháng 4 2017 lúc 12:41

nếu x<2017 thì x-2017<2017

vì tổng của các giá trị tuyệt đối không thể là số âm nên x<2017 loại.

xét \(x\ge2017\), ta có:\(\left|x-2014\right|=x-2014\\ \left|2x-2015\right|=2x-2015\\\left|3x-2016\right|=3x-2016\)

khi đó:

\(x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x=4028\\ \Leftrightarrow x=\dfrac{2014}{3}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

Trần Quốc Lộc
10 tháng 5 2018 lúc 17:14

\(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\)

Do \(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|\ge0\forall x\)

\(\Rightarrow x-2017\ge0\\ \Leftrightarrow x\ge2017\)

\(\Rightarrow\left\{{}\begin{matrix}x-2014\ge3>0\\2x-2015\ge2019>0\\3x-2016\ge4035>0\end{matrix}\right.\)

\(pt\Leftrightarrow\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\\ \Leftrightarrow x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x-6045=x-2017\\ \Leftrightarrow6x-x=-2017+6045\\ \Leftrightarrow5x=4028\\ \Leftrightarrow x=\dfrac{4028}{5}\\ \)

Vậy pt có nghiệm \(x=\dfrac{4028}{5}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 20:16

a:

ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)

 \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)

=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)

=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)

=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)

b:

ĐKXĐ: x<>-3

 \(y=\left(x+3\right)+\dfrac{4}{x+3}\)

=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)

\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)

=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)

y'=0

=>\(\left(x+3\right)^2-4=0\)

=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)

=>(x+5)(x+1)=0

=>x=-5 hoặc x=-1

c:

ĐKXĐ: x<>-2

 \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)

=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)

=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)

=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)

\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)

d: 

ĐKXĐ: x<>2

\(y=x-2+\dfrac{9}{x-2}\)

=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)

\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)

=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)

y'=0

=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)

=>\(\left(x-2\right)^2-9=0\)

=>(x-2-3)(x-2+3)=0

=>(x-5)(x+1)=0

=>x=5 hoặc x=-1

LOne WoLf
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
9 tháng 3 2020 lúc 15:18

tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi 

\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)

\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)

\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)

\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)

Khách vãng lai đã xóa
phan thị minh anh
Xem chi tiết