Giải phương trình \(\left|x-3\right|^{2014}+\left|x-4\right|^{2015}=1\)
Giải phương trình: \(\left(2x^2+x-2014\right)^2+4\left(x^2-5x-2013\right)^2=4\left(2x^2+x-2014\right)\left(x^2-5x-2013\right)\)
Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)
thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)
Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)
\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)
Giải các phương trình sau:
a) \(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)
b) \(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)
c) \(\left(2x-5\right)^3+27\left(x-1\right)^3+\left(8-5x\right)^3=0\)
P/s: câu c giải theo cách (cho a + b + c = 0; CM: \(a^3+b^3+c^3\))
\(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)
\(\Leftrightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)
\(\Leftrightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)
Dễ thấy cái vế sau > 0 nên x=2016
Câu b có cách nào hay hơn bằng cách phá ko ta,hóng quá:)
\(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)
\(\Leftrightarrow8x^3+12x^2+6x+1+27x^3-27x^2+9x-1=125x^3\)
\(\Leftrightarrow35x^3-15x^2+15x=125x^3\)
\(\Leftrightarrow90x^3+15x^2-15x=0\)
\(\Leftrightarrow x\left(90x^2+15x-15\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow x=0;x=-\frac{1}{2};x=\frac{1}{3}\)
Câu c có cách giải rất hay đó nha :)
\(\left(2x-5\right)^3+27\left(x-1\right)^3+\left(8-5x\right)^3=0\)
\(\Leftrightarrow\left(2x-5\right)^3+\left(3x-3\right)^3+\left(8-5x\right)^3=0\)
Đặt \(2x-5=a;3x-3=b;8-5x=c\Rightarrow a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
Khi đó:
\(\left(2x-5\right)^3+27\left(x-1\right)^3+\left(8-5x\right)^3=0\)
\(\Leftrightarrow3\left(2x-5\right)\left(3x-3\right)\left(8-5x\right)=0\)
\(\Leftrightarrow x=\frac{5}{2};x=1;x=\frac{8}{5}\)
\(\left(2x^2+x-2015\right)^2+4.\left(x^2-5x-2016\right)^2=4.\left(2x^2+x-2015\right).\left(x^2-5x-2016\right)\) Giải phương trình trên..
Đặt 2x2+x-2015=a; x2-5x-2016=b
phương trình tương đương a2+4b2=4ab
=> a2-4ab+4b2=0
=> (a-2b)2=0
=> a=2b
vậy 2x2+x-2015=2*(x2-5x-2016)
=> x=\(\frac{-2017}{11}\)
Nghiệm nhỏ nhất của phương trình \(\left(x^2-2014\right)\left(x^2-2015\right)\left(x^2-2016\right)\) = 0 là :
Ta có :
\(\left(x^2-2014\right)\left(x^2-2015\right)\left(x^2-2016\right)\)\(=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-2014=0\\x^2-2015=0\\x^2-2016=0\end{cases}}\)
Giải (1) :
\(x^2-2014=0\)
\(\hept{\begin{cases}x=\sqrt{2014}\\x=-\sqrt{2014}\end{cases}}\)
Giải (2) :
\(x^2-2015=0\)
\(\hept{\begin{cases}x=\sqrt{2015}\\x=-\sqrt{2015}\end{cases}}\)
Giải (3) :
\(x^2-2016=0\)
\(\hept{\begin{cases}x=\sqrt{2016}\\x=-\sqrt{2016}\end{cases}}\)
Vậy nghiệm nhỏ nhất của phương trình là \(x=-\sqrt{2016}\)
Chú ý : \(x^2-2014=0\)(1)
\(x^2-2015=0\)(2)
\(x^2-2016=0\)(3)
Mọi người ơi giúp em 3 bài này với... E làm mãi không được ..
Mọi người giúp em với. Em cảm ơn nhiều ạ.
1. Cho các số a,b,c,d thỏa mãn \(a^2+b^2+\left(a+b\right)^2=c^2+d^2+\left(c+d\right)^2\)
Chứng minh rằng :\(a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)
2. Cho các số a,b,c thỏa mãn \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính giá trị của biểu thức \(A=a^{2014}+b^{2015}+c^{2016}\)
3. Giải phương trình : \(\left(3x^2+x+2015\right)^2+4\left(x^2+1008\right)^2=4\left(x^2-1008\right)\left(3x^2+x+2015\right)\)
Giải phương trình :
\(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\)
nếu x<2017 thì x-2017<2017
vì tổng của các giá trị tuyệt đối không thể là số âm nên x<2017 loại.
xét \(x\ge2017\), ta có:\(\left|x-2014\right|=x-2014\\ \left|2x-2015\right|=2x-2015\\\left|3x-2016\right|=3x-2016\)
khi đó:
\(x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x=4028\\ \Leftrightarrow x=\dfrac{2014}{3}\left(loại\right)\)
vậy phương trình đã cho vô nghiệm.
\(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\)
Do \(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|\ge0\forall x\)
\(\Rightarrow x-2017\ge0\\ \Leftrightarrow x\ge2017\)
\(\Rightarrow\left\{{}\begin{matrix}x-2014\ge3>0\\2x-2015\ge2019>0\\3x-2016\ge4035>0\end{matrix}\right.\)
\(pt\Leftrightarrow\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\\ \Leftrightarrow x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x-6045=x-2017\\ \Leftrightarrow6x-x=-2017+6045\\ \Leftrightarrow5x=4028\\ \Leftrightarrow x=\dfrac{4028}{5}\\ \)
Vậy pt có nghiệm \(x=\dfrac{4028}{5}\)
tính đạo hàm
a) \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}\)
b) \(y=x+3+\dfrac{4}{x+3}\) giải phương trình y'=0
c) \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\) tính y'(-1)
d) \(y=x-2+\dfrac{9}{x-2}\) giải phương trình y'=0
a:
ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)
\(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)
=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)
=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)
b:
ĐKXĐ: x<>-3
\(y=\left(x+3\right)+\dfrac{4}{x+3}\)
=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)
\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)
=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)
y'=0
=>\(\left(x+3\right)^2-4=0\)
=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)
=>(x+5)(x+1)=0
=>x=-5 hoặc x=-1
c:
ĐKXĐ: x<>-2
\(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)
=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)
=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)
d:
ĐKXĐ: x<>2
\(y=x-2+\dfrac{9}{x-2}\)
=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)
\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)
=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)
y'=0
=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)
=>\(\left(x-2\right)^2-9=0\)
=>(x-2-3)(x-2+3)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
Giải phương trình:
1,\(\left(x^2-x+1\right)^4+5x^4=6\left(x^2-x+1\right)^4\)
2,\(\frac{x+4}{x-1}+\frac{x-4}{x+1}=\frac{x-8}{x+2}+\frac{x+8}{x-2}+\frac{8}{3}\)
3,\(\left|x-2015\right|^{2015}+\left|x-2016\right|^{2016}=1\)
4,\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
5,\(\left(x+2008\right)^4+\left(x+2009\right)^4=\frac{1}{8}\)
tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi
\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)
\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)
\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)
\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)
giải pt \(\left|x-2015\right|^{2014}+\left|x-2016\right|^{2015}=1\)