1.So sánh A = \(\sqrt{2014}+\sqrt{2015}+\sqrt{2016}\) và B = \(\sqrt{2011}+\sqrt{2013}+\sqrt{2021}\) mà không dùng máy tính và bảng số.
2.Giải phương trình : \(\sqrt{\left(x-2015\right)^{14}}+\sqrt{\left(x-2016\right)^{10}}=1\)
Giải phương trình : \(\sqrt{\left(x-2015\right)^{14}}+\sqrt{\left(x-2016\right)^{10}}=1\)
a. giải phương trình sau : \(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
b. cho x,y,z là 3 số thỏa mãn : xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
tính giá trị của biểu thức : \(P=\left(x^{2015}-1\right)\left(y^{2016}-1\right)\left(z^{2017}-1\right)\)
giải phương trình
a. \(x^2+2x+7=3\sqrt{\left(x^2+1\right)\left(x+3\right)}\)
b. \(\sqrt{3x-1}+\sqrt{2-x}=3\)
c. \(\sqrt{x+9}+2016\sqrt{x+6}=2016+\sqrt{\left(x+9\right)\left(x+6\right)}\)
giải pt \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
giải pt a. \(9x+7=6\sqrt{8x+1}+4\sqrt{x+3}\)
b. \(\sqrt{\left(3x-3\right)\left(x+3\right)+16}+\sqrt{5\left(x-2\right)\left(x+4\right)+54}=-x^2+2x+4\)
Giải pt: \(19x+\left(3-\sqrt{3-x}\right)\sqrt{3x+1}+\left(4x-25\right)\sqrt{3-x}=39\)
1) giải pt \(-3x^2+x+3+\left(\sqrt{3x+2}-4\right)\sqrt{3x-2x^2}+\left(x+1\right)\sqrt{3x+2}=0\)
giải hệ pt \(\begin{cases}x^2+y^2=1\\\sqrt[1999]{x}-\sqrt[1999]{y}=\left(\sqrt[2000]{y}-\sqrt[2000]{x}\right)\left(x+y+xy+2001\right)\end{cases}\)